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Abstract

In a market with repeated sales of a single item to a single buyer, prior work has es-
tablished the existence of a zero revenue perfect Bayesian equilibrium in the absence of a
commitment device for the seller. This counter-intuitive outcome is the result of strategic
purchasing decisions, where the buyer worries that the seller will update future prices in
response to past purchasing behavior. We first show that in fact almost any revenue can
be achieved in equilibrium, but the zero revenue equilibrium uniquely survives natural re-
finements. This establishes that single buyer markets without commitment are subject to
market failure. However, our main result shows that this market failure depends crucially
on the assumption of a single buyer. If there are multiple buyers, the seller can approximate
the revenue that is possible with commitment. We construct an intuitive equilibrium for
multiple buyers that survives our refinements, in which the seller learns from past purchas-
ing behavior and obtains a constant factor of the per-round Myerson optimal revenue. The
seller’s pricing policy has a natural explore-exploit structure, where the seller starts with
low prices that gradually ascend to learn buyers’ values, and in later rounds exploits the
surviving high-valued buyers. The result resembles an ascending-price auction with a supply
limit, implemented over time.

On face, our result runs counter to intuition from the Coase conjecture in the durable
goods literature [Coase 1972] which states that in the absence of commitment, one should
expect the VCG outcome (which, for digital goods, would yield trivial revenue for the seller).
We argue that our positive result is driven by the assumption of anonymous prices. We
show that if the seller is permitted to offer different prices to each agent then the Coasian
intuition from the single-item setting binds once more: the seller is no longer able to extract
nontrivial revenue from any equilibrium with sufficiently natural structure. In other words,
the restriction of the seller to an anonymous price was crucial in deriving nontrivial revenue
with unlimited supply. Intuitively, an anonymous price mitigates the ability of the seller to
use the information an individual buyer leaks with each purchasing decision. Consequently,
buyers are more willing to make nontrivial purchasing decisions, which in turn allows the
seller to learn.

1 Introduction

It is now commonplace for regular, repeated purchases to be made through large online platforms.
New parents purchase diapers monthly through Amazon Prime. Firms buy online advertising
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space millions of times per day through Google, Microsoft and other advertising markets. City-
dwellers use delivery services like Foodler and Instacart to purchase their meals and groceries.
Each platform is a cornucopia of data, since they can readily observe how pricing decisions
affect the purchasing behavior of customers, both in aggregate and individually. It is tempting
for a platform to exploit this historical data, by using the past behavior of individual users to
tune prices and maximize revenue. However, using revealed preference data in this way runs
afoul of game-theoretic considerations. If a regular customer knows that their behavior will
impact the prices they will be offered in the future, they will naturally respond by changing
their behavior. It is therefore crucial to understand how forward-looking customers will respond
to price-learning algorithms, and the implications for how a seller should use historical data to
make pricing decisions.

Consider the following simple and fundamental instantiation of the repeated-sales problem,
coined the “fishmonger problem” in Devanur et al. (2015). There is a single seller, and each
day the seller has a single copy of a good to sell. There is a single buyer, who has a private
value v ≥ 0 for obtaining the good each day, drawn from a distribution known to the seller.
Crucially, the value does not change from one day to the next; the buyer has the same value
for consuming the good on every day. Each day, the seller posts a take-it-or-leave-it price, and
the buyer can choose to accept or reject. The seller is free to set each day’s price however she
chooses, given the past purchasing behavior of the buyer. On any day that the buyer rejects,
the good expires and the seller must discard it. The game is played for infinitely many rounds;
the buyer wishes to maximize total time-discounted utility, and the seller wishes to maximize
total time-discounted revenue.

How should the seller set her price? If there is only a single round, the well-known solution
is to post the Myerson price for the buyer’s distribution, which maximizes expected revenue. In
the dynamic setting, however, we cannot expect the seller to post the Myseron price each round.
After all, if the buyer chose not to purchase on the first day, the seller would naturally want to
learn from this information and set a lower price on the following day. It is tempting to guess
that the seller can benefit from this opportunity to learn, by offering a variety of prices to gain
information about the value v, then use this knowledge to set an aggressive price just below v.
However, a surprising folklore result implies that such techniques can never be beneficial to the
seller: the average per-round revenue can never be higher than the one-round Myerson revenue.
Intuitively, the issue is that a rational buyer would respond to an explore/exploit strategy by
pretending at first to have a low value, passing up some opportunities to buy the item, in order
to secure a lower price later on. Indeed, this strategic demand-reduction behavior is the essence
of bargaining, and is commonly observed in practice.

So what can the seller do? To disentangle the strategic behavior of the buyer and seller,
it is necessary to study equilibria. Since ours is a repeated game with private information,
the appropriate solution concept is perfect Bayesian equilibrium (PBE). A formal definition is
given in Section 2, but roughly speaking a PBE requires that the decision taken by each player
at each point in time, for any observed history of prices and purchases, is a best response to
the anticipated future behavior of the other player, given the seller’s belief about the private
value (which will depend on the observed behavior of the buyer). Determining how the seller
should set prices then reduces to understanding the structure of PBE. Sadly, prior work on
equilibria for repeated sales have mostly generated negative results. In particular, there exist
PBE in which the seller posts a price equal to the minimum value in the support of the buyer’s
distribution in every round Devanur et al. (2015); Hart and Tirole (1988); Schmidt (1993). For
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example, if the buyer’s value is supported on [0, 1], then there is a PBE with zero revenue for
the seller. This extreme and counterintuitive equilibrium is driven by a self-fulfilling prophecy:
the buyer never accepts any positive price out of fear that doing so will lead the seller to charge
very high prices in the future; as a result, the seller infers that only a buyer with very high
type would ever accept a positive price, so the seller would indeed charge very high prices in
response. The formal details of the equilibrium are described in Section 3. This construction
illustrates that in the absence of commitment power, a seller might suffer extremely low revenue
in long-term interaction with a buyer. We note that this conclusion is reminiscient of the Coase
conjecture; the primary difference is that the Coase conjecture refers to a durable good that a
buyer will purchase only once, whereas in the fishmonger problem the good is perishable and
can be repurchased each day (Coase, 1972).

This result is quite negative, but also unsatisfying since the low-revenue equilibrium does
not appear to be predictive of real-world outcomes. Why don’t we see this behavior in practice?
One simplifying assumption in the model is the presence of only a single buyer. Indeed, because
there is only one buyer, it is possible for the seller to exploit the buyer’s revealed preference
in a very targetted way. In contrast, if the seller continues to sell by posting a single price,
but that price will be faced by multiple buyers, then the opportunity for price-discrimination
is diminished. Intuitively, in a market with multiple buyers, each buyer is less worried about
being exploited directly, and competition gives an extra incentive to purchase even though this is
revealing a signal to the seller. We therefore ask: would the presence of multiple buyers change
the structure of equilibrium?

1.1 Our Results

Understanding One Buyer The existence of a zero-revenue equilibrium is discouraging,
but we begin by showing that the single-buyer situation is even more dire than that. One
might wonder whether the low-revenue equilibrium is simply an edge case, and that better
and more plausible equilibria exist. Indeed, we establish a folk theorem that implies that any
amount of revenue between the trivial lower bound (that of posting the minimum-supported
value every round) and that of Myerson pricing every round can be realized at a PBE of the
game. However, despite the rich space of equilibria, we prove that the zero-revenue equilibrium
is the unique equilibrium that survives a natural refinement of the set of PBE. Specifically, it
is the unique equilibrium in which the buyer uses threshold strategies (i.e., on each round and
for any offered price, a buyer purchases if and only if their value is sufficiently high), strategies
are Markovian on-path (meaning that on the equilibrium path, the players’ strategies depend
only on their beliefs and the current price, and not the full history of past play), and the seller
offers prices in the support of buyers’ distributions. The Markovian and threshold refinements
have been studied previously in the context of repeated sales (see Fudenberg and Tirole (1983)
and Hart and Tirole (1988)), and are natural conditions for “simple” strategies. We interpret
this as strong evidence that the zero-revenue equilibrium, and the market failure it implies, is
actually a plausible and natural outcome of the single-buyer repeated game.

Multiple Buyers and Digital Goods We next turn to studying a multi-buyer variant of
the Fishmonger problem. Suppose now that there are n ≥ 2 buyers, each buyer’s value is drawn
iid from a known distribution, and these values are again fixed over all rounds. The seller has
one copy per buyer per day, but must post a single, anonymous price each day. Each buyer
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independently chooses whether or not to purchase each day.1

In contrast to the single-buyer variant, we show that the seller can achieve a constant fraction
of the benchmark optimal revenue in a PBE that employs threshold strategies and is Markovian
on-path, surviving our refinements. The equilibrium we construct has a natural form, based
upon an explore-exploit structure. The seller starts by setting a low price, and slowly raises
the price over time. Once sufficiently many buyers stop purchasing, the seller switches to an
exploitation phase in which she posts the highest price at which she believes the remaining agents
are guaranteed to buy. Since agents are guaranteed to buy, the seller stops learning information
about the buyers’ values, and posts the same price every round from that point onward.

This equilibrium structure sets up a natural optimization problem for the seller: how quickly
should prices be increased, given the way that rational buyers will respond at equilibrium?
Typical of explore/exploit algorithms, the seller must balance the rate of learning with the
revenue ultimately generated in the exploitation phase. We derive a candidate policy that
lowerbounds the seller’s revenue, providing an approximation result: if the distribution over
buyers’ values is regular and has a monopoly price which is bounded away from the extremes
of the distribution, then we show how to compute prices (and the corresponding equilibrium
thresholds for the buyers) that generate a constant fraction of the Myerson optimal revenue.

Coasian Intuitions and Anonymous Pricing At first glance, the positive results for the
multi-buyer game are surprising. They imply that the apparent failure of the single-buyer game
for the seller was a fluke, and not robust to a change in the model. Moreover, intuition from the
literature on durable goods (Coase, 1972) hints at a different outcome. Coase (1972) suggests
that the intuitive prediction for a setting where the seller cannot commit to a mechanism should
be that equilibrium implements the efficient VCG outcome. In the single-buyer setting, this
produces the trivial equilibrium we show to be focal. For the setting with many buyers, the
unlimited nature of the supply should imply a similar conclusion. The explore-exploit structure
of our multibuyer equilibrium, however, resembles an ascending-price auction, implemented over
many rounds of play, implementing an outcome with greater competition and inflated revenue.

This suggests a larger question: when is it correct to predict the efficient outcome in re-
peated sales? We consider the role in the above of the exogenous constraint that the seller post
an anonymous price. What if the seller is able instead to post a separate price for each buyer in
a digital goods setting? By slightly strengthening our refinements, we show that the focal equi-
librium is the one in which the selling problem decouples for each buyer, and the seller’s revenue
is again the trivial revenue of the efficient outcome. This is evidence that the anonymous pricing
constraint was crucial for the seller’s ability to obtain nontrivial revenue in the digital goods
setting. Intuitively, the anonymous price made information leakage from nontrivial purchasing
strategies less costly to the buyers, which in turn allowed the seller to learn in equilibrium.

Limited Supply We finally consider a two-buyer version of our model where supply is exoge-
nously limited to one item. If multiple buyers wish to purchase at the offered price on a given
day, then one of the accepting buyers is chosen uniformly at random to make the purchase. We
again exhibit an equilibrium which survives our refinements and in which the seller obtains a
constant fraction of the optimal revenue, assuming distributions satisfy the monotone hazard

1We choose to model the fishmonger problem as a pricing problem, as this is a common approach taken in
practice. We note that one could alternatively model it as a general mechanism design problem, which we leave
as a direction for future research.
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rate condition. Our equilibrium shares a similar structure with that of the digital goods setting:
the seller gradually increases the price until one or both of the buyers drops out, then exploits
the buyers for the rest of the game.

1.2 Related Work

Hart and Tirole Hart and Tirole (1988) initiated the study of repeated sales (“rental,” in their
terms) with a single buyer and a large but finite horizon. They consider a special case with
just two possible values. They show that in equilibrium the seller will always post the smaller
value for all but a constant number of final rounds. Schmidt (1993) genereralized their result to
general discrete distributions. For a survey of this work and the large body of work on closely
related models, see the survey of Fudenberg and Villas-Boas (2006). Some variants include
Kennan (2001) and Battaglini (2005) who analyze the setting where the value of the buyer is
not constant but evolves according to a Markov process, and Conitzer et al. (2012) who study
the case where the buyers are short-lived and given the option to anonymize at a cost.

Closest to our work is Devanur et al. (2015), which was the first attempt by the CS com-
munity to attempt to move beyond the strong negative results in the setting of Hart and Tirole
(1988) and Schmidt (1993), and the first to consider continuous distributions. Like us, they
analyzed threshold equilibria, proving that no such equilibria exist for large but finite numbers
of rounds. They go on to study the case of partial commtiment, where the seller can commit to
never increase the price in the future. They prove existence of PBE for power law distributions
and provide revenue guarantees for the uniform distribution U [0, 1]. Note that our results can be
directly compared to Devanur et al. (2015) where instead of relaxing the commitment assump-
tions we introduce an extra buyers and an anonymous price, and provide revenue guarantees for
a much larger family of distributions.

2 Model

Below, we give the formal description of our model for the sale of a single good to multiple
buyers. We assume the seller is exogenously constrained to anonymous pricing. That is, they
post a single price each round, which is seen by all buyers. We will consider a seller with many
identical items for sale and relax the constraint of anonymous pricing later on, and will describe
the formal changes to the model when appropriate.

Game Description and Timing: The dynamic pricing game takes place over an infinite
stream of rounds, with time discounting. We consider a digital goods environment: each round,
there is one item copy for sale per buyer, and items must be allocated using a common price
among n buyers. Before the game begins, each buyer i draws their value vi for the good
independently and identically from some continuous distribution F with bounded support. We
assume F is common knowledge. The value for allocation remains unchanged from round to
round. Each round k then proceeds in the following way:

1. The seller chooses a price pk ≥ 0, which is posted to the buyers.

2. Buyers simultaneously decide whether to accept pk.

3. Each agent who accepts is awarded a copy of the item and charged pk.
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Utilities: Agents are risk-neutral expected utility maximizers. Utilities are linear in money,
additive across rounds, and discounted by a common discount factor δ ∈ (0, 1) over time. For-
mally:

• Seller: The seller’s utility for an outcome to the above game is
∑

k δ
kpkqk, where qk is the

number of items sold in round k.

• Buyer: The buyer’s utility for an outcome is
∑

k : i accepts δ
k(vi − pk).

Note that all of our results, except the revenue analyses of Sections 5.2 and Sections 7.2, hold
without modification if the seller holds a different discount factor from the buyers. Moreover,
the revenue analyses extend in a natural way.

Information: We assume all information and outcomes are common knowledge, with the
exception of buyers’ values, which are privately held and unknown by all other agents.

Histories: A history of play at round k, denoted hk is different for buyers and the seller, but
generally consists of all past pricing and purchasing decisions. Formally, hk consists of consists
of the vector p[k−1] = (p1, . . . , pk−1) of past prices, as well as the purchasing decisions of agents
in each past round, denoted D[k − 1] = (D1, . . . ,Dk−1), where Dj = (Dj

1, . . . , D
j
n) ∈ {A,R}n is

the vector of accept/reject decisions for each agent i in round j.

Beliefs: The seller does not know any buyer’s values, and buyers only know their own. As
mentioned earlier, this uncertainty is modeled with a Bayesian prior. After every round of
play, the actions of agents may reveal information about their private values, and hence agents’
beliefs must be updated. We consider only outcomes where agents’ posteriors after each round
are shared, which is possible because all actions are commonly observed. The prior for vi after
history hk, denoted µki (· |hk), is a probability measure over the support of F . The joint posterior
at round k is denoted µk = ×iµki . After round k, the seller believes values are distributed
according to µk, and buyer i believes other buyers’ values are distributed according to µk−i.

Strategies: Generally, strategies are maps from histories and private information to actions
in round k:

• A seller strategy σkS(hk) specifies for every history hk a nonnegative price pk.

• Buyer i’s strategy σki (hk, pk; vi) specifies for every buyer history a response to price pk for
every possible value of buyer i.

Equilibrium: Our solution concept is Perfect Bayesian Equilibrium (PBE). Perfect Bayesian
Equilibrium imposes joint requirements on beliefs and strategies: beliefs must be updated accu-
rately given strategies, and given beliefs, strategies must be sequentially optimal for all agents.
Formally, a profile of strategies σ = (σkS(·), σk1 (·), . . . , σkn(·)) and beliefs µk(·) for k ≥ 0 is a PBE
only if:

• Bayesian updating: For every history hk, if there is some v such that µki (v |hk) > 0 and
σki (hk, pk; v) = Dk

i , then µki (v |hk) is computed according to Bayes’ rule. Importantly, for
histories which would not occur according to (σkS(·), σk1 (·), . . . , σkn(·)) under any realization
of buyers’ values, beliefs may be arbitrary.
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• Sequential optimality: Let uS(σ |hk,µk) denote the expected utility of the seller from
the continuation of the game from stage k according to σ, given that buyers’ values are
distributed according to µk(hk). We require that for every alternate strategy σ′S of the
seller, we have that uS(σ |hk,µk) ≥ uS(σ′S ,σ−S |hk,µk). Similarly if ui(σ |hk,µk, pk; vi)
is the expected utility of a buyer with value vi offered price pk under history hk and
beliefs µk−i(h

k) on other buyers’ values, ui(σ |hk,µk, pk; vi) ≥ ui(σ
′
i,σ−i |hk,µk; vi) for

every alternate strategy σ′i.

Simple Equilibria: Equilibria may in general be extremely complicated. We focus on equi-
libria satisfying two refinements:

• Markovian on path: An equilibrium is Markovian on path if on the equilibrium path,
agents condition their actions only on the public beliefs and their private information,
rather than the complete history. Formally, for any profile of buyer values v and strategy
profile σ, let hk and hk

′
be the histories generated by σ under v. If µk = µk

′
, then

pk = pk′ and Dk = Dk′ .

• Threshold equilibrium: If a buyer will buy when their value is vi, they will also buy with
any higher value. Formally, a PBE is a threshold equilibrium if for each history hk and
price pk, there is a threshold ti(h

k, pk) such that for each agent i, i accepts pk if and
only if vi ≥ ti(h

k, pk). Note that in threshold equilibria, updated beliefs derived from
on-path histories will be the value distribution F conditioned to some interval [a, b] for
each agent. For such equilibria, we will therefore summarize beliefs over agent i’s value
with the notation F ba to denote F conditioned to the interval [a, b].

We refer to threshold equilibria which are Markovian on path as simple. Note that simplicity is
a refinement rather than a restriction of the strategy space.

3 Folk Theorem

We first explore the space of Markovian on path threshold equilibria with no further refinements.
It is well-known from previous work on the subject that there exists an equilibrium for the one-
buyer case in which the seller gets no revenue and does not learn anything about the buyer’s
value. The buyers refuse all positive prices, and deviation is punished by the seller with high
prices in the future. We refer to this as the no-learning equilibrium, and for completeness present
the equilibrium in Appendix A. Formally, we have:

Theorem 1 (Devanur et al. (2015)). For δ ≥ 1/2 and any number of buyers there is a simple
PBE in which the seller does not learn, and posts a price of 0 every round. All buyers accept
each round.

The no-learning equilibrium is considered unnatural and unpredictive. In this and the next
section, we offer a more nuanced view. We prove a folk theorem: the no-learning equilibrium
can be used to enforce other even less intuitive equilibria, including posting any fixed price
every round. In other words, PBE is ineffective at ruling out commitment. We solve this
problem in Section 4, by offering an additional, intuitive refinement which surprisingly eliminates
all equilibria but precisely the no-learning equilibrium. This suggests that such behavior is a
reasonable outcome to the game.
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Theorem 2 (Folk theorem). If δ ≥ 1/2, then for any price p, there is a Markovian on path
threshold PBE of the dynamic pricing game with n buyers where the seller offers price p every
round on the equilibrium path, regardless of the action of the buyers. This holds regardless of
the initial prior over buyers’ values.

We prove the theorem in Appendix B. Intuitively, we use the no-learning equilibrium to
commit the seller to a strategy. One way to understand the space of PBE is in terms of pairs of
attainable payoffs for the buyers and the seller. Theorem 2 implies that the Pareto frontier of
attainable payoffs under our two simplicity refinements is at least as strong as that attainable
from posting the same price each round. A natural question is whether there are PBE which
surpass this frontier. The best known bounds on the performance of PBE is a theorem due to
Devanur et al. (2015), which we rephrase below.

Theorem 3 (Devanur et al. (2015)). For any target total expected buyer utility U and revenue
R attainable in a PBE, there is a mechanism for the single-round game in which the buyers
attain total expected utility (1− δ)U and the seller attains expected revenue (1− δ)R.

The proof is constructive: given the PBE attaining R and U , the mechanism designer may
in essence simulate the PBE on the reported values of the buyers. In other words, PBE resemble
single-shot mechanisms with stronger incentive constraints. Theorem 3 implies that the utility-
revenue Pareto frontier for PBE cannot generally exceed that of the single-shot mechanism
design problem. For one buyer, Theorem 3 implies that the folk theorem is tight - the utility
and revenue guarantees are the best possible.

Theorem 2 implies a troubling multiplicity of equilibria, all with very different outcomes for
both the seller and the buyers. It implies that further study of PBE is not worthwhile without
a manner of refining away equilibria. We provide such a selection tool in the next section.

4 Non-Robustness of One-Buyer Learning Equilibria

We now specifically consider the case of one buyer and one seller. In this setting, Theorem 2
proves that there are Markovian on path threshold equilibria which are totally efficient, totally
inefficient, and revenue-maximizing, as well as everything in between. We argue that all ineffi-
cient equilibria exhibit unnatural seller behavior. In particular, in any equilibrium of Theorem 2
where the seller posts a non-trivial price, there are continuations in which the seller offers prices
which will be accepted with probability zero according to the current beliefs. We prove in this
section that every simple equilibrium of the one-buyer case, except those in which all buyers
accept every round and no learning occurs on the part of the seller requires such odd behavior.
This leaves only equilibria in which the seller posts a price at or below the bottom of buyers’
common support each round. We first formalize “natural” seller behavior.

Definition 4. A perfect Bayesian threshold equilbrium σ of the single-buyer has natural prices
on-path (or simply natural prices) if for every on-path history hk with beliefs over buyer values
supported on [ai, bi] for i ∈ {1, . . . , n}, the seller’s price σkS(hk) lies in ∪i[ai, bi).

In other words, the seller does not offer any prices which would not be obviously dominated
for any joint distribution over buyer values with the given support. Though this requirement
might seem mild, it in fact suffices to eliminate all nontrivial equilibria.
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Theorem 5. In the single-buyer game, let the initial value distribution F be supported on [a, b].
If δ > 1/2, then in any simple PBE with natural prices, the seller posts a price which is at
most the support lower bound, a, every round, which is accepted by all types. In other words, no
learning will occur.

Driving the proof of Theorem 5 will be an idea from single-dimensional mechanism design:
in equilibrium, allocations are monotone in type. In the repeated pricing setting, agents are
maximizing their total discounted utility, which is a function of total discounted allocation
and total discounted payments. These quantities satisfy the usual incentive constraints from
mechanism design, and hence intuitions from mechanism design carry over. We now define
these formally:

Definition 6. Given a PBE of the single-buyer game, let: xk(v) be an indicator variable of
whether or not the buyer with value v purchases in round k on the equilibrium path, and let
pk(v) be the on-path price offered that round. Then we may define the following:

• The total discounted allocation:

X(v) =
∞∑
k=1

δk−1xk(v)

• The total discounted payments:

P (v) =
∞∑
k=1

δk−1pk(v)xk(v)

• The total discounted utility:
U(v) = vX(v)− P (v)

.

Lemma 7. In any PBE of the one-buyer game, the total discounted allocation, payments, and
utility (respectively X(v), P (v), and U(v)), are nondecreasing in v.

To prove this claim, we invoke a theorem of Myerson (1981):

Theorem 8 (Myerson (1981)). Let f(·), g(·) and be functions from some interval [a, b] (a > 0)
to the positive reals, and assume the following holds for all v and v′ in [a, b]:

vf(v)− g(v) ≥ vf(v′)− g(v′).

Then the following must be true:

1. f(·) is nondecreasing in v.

2. g(v) = vf(v)−
∫ v
a f(s) ds+ g(a).

The classic application of this theorem sets f(·) to be the equilibrium allocation probability
in a single-item auction and g(·) the equilibrium expected payments. We take a similar approach
to prove Lemma 7.
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Proof of Lemma 7. Consider an buyer with value v, who must choose a strategy. Among their
options are to pretend to have a different value, say v′, and play the actions that value would play.
Doing so would yield total discounted allocation X(v′), total discounted payments P (v′), and
total discounted utility U(v′). Since the buyer is best responding, it must be that vX(v)−P (v) ≥
vX(v′)− P (v′). We may now invoke Theorem 8. Monotonicity of X(·) follows from part (1) of
the theorem, and monotonicity of P (·) from part (2). Noting that U(v) =

∫ v
a X(s) ds − P (a)

shows U(·) to be nondecreasing as well.

We will only use monotonicity of allocations here. In Appendix C, we make heavier use of
Lemma 7 to derive alternate sufficient conditions under which the conclusions of Theorem 5
hold.

We now show that natural prices induces non-monotonicity around any threshold t other
than the bottom of the support. In particular, we will show that there must exist a type below t
with high cumulative allocation, while the threshold type gets allocated strictly less often. This
contradicts Lemma 7.

Lemma 9. For any δ > 1/2, consider any simple PBE of the single-buyer game satisfying
natural prices with distribution supported on [a, b] and first-round threshold t > a. There exists
a type t′ < t such that X(t′) > 1.

Proof. We argue by contradiction. We will assume that for all t′ < t, X(t′) ≤ 1 and use natural
prices, along with simplicity of equilibrium, to show that there is at least one type less than t
who would prefer to deviate from the equilibrium.

We first argue that we may assume the existence of some M such that all types in [a, t) have
rejected by round M . Assume this is not the case. Then let kε be the earliest round such that
all agents in [a, t − ε) have rejected at least once. If it is the case that kε → ∞ as ε → 0, then
because δ > 1/2, it must be the case that there exists some t′ < t with X(t′) > 1, which would
prove the lemma. Hence we may assume that the number of rounds before every type in [a, t)
would reject at least once on the equilibrium path is finite.

Let M an index such that all agents in [a, t) have rejected before round M . We now claim
that there is a round M∗ ≤ M such that a positive measure of types accept in every one of
rounds 1, . . . ,M∗ − 1, but all such agents reject in round M∗. If not, then it must be that a
positive measure of agents accept in every round up to and including M , a contradiction. Let
the interval of such agents be [a∗, t). (The upper bound being t is implied by the threshold
property.)

Finally, we show that the existence of M∗, combined with natural prices and the Markovian
on path property, implies a profitable deviation for some buyer with type in [a∗, t). First note
that the beliefs conditioned on acceptance in rounds 1, . . . ,M∗ − 1 do not change after round
M∗, as all agents who accepted in rounds 1, . . . ,M∗−1 will reject in round M∗. Because beliefs
don’t change, the Markovian in path property implies that actions don’t change - hence, in this
continuation, no agent in [a∗, t) accepts after round M∗−1. On the other hand, the requirement
of natural prices on path implies that the seller offers a price p ∈ [a∗, t) in every round after
M∗−1. Some type in (p, t) would clearly prefer to accept at least once rather than reject forever,
yielding a contradiction.

Proof of Theorem 5. Fix a δ > 1/2, and consider a round of the game in which the beliefs are
supported on [a, b] and for which the buyer has a nontrivial threshold t (i.e. above the bottom of
the support of the current beliefs). Subgame perfection implies that we may assume this round
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is the first. We know from Lemma 9 that there is a value t′ < t such that X(t′) > 1. We will
show that we may break ties so that X(t) = 1, which contradicts Lemma 7.

By the definition of threshold equilibrium, the buyer with type t accepts this round. Natural
prices implies that upon seeing an acceptance, the seller will never price below t. It follows
that the buyer with value t will not get utility from any subsequent round. We may therefore
assume they reject in every round without changing their utility. Moreover, such tiebreaking
doesn’t change the incentives of the seller, as the type t buyer has measure 0. Hence, there is
an equilibrium with X(t) = 1 and X(t′) > 1 for some t′ < t, contradicting Lemma 7.

In Appendix C we give an alternate refinement which similarly eliminates learning equilibria.
Theorem 5 and Appendix C together strongly suggest that with just one buyer, one should not
expect the seller to learn from purchasing behavior. This strengthens the conclusions of Hart and
Tirole (1988) and Schmidt (1993) and extends them to continuous distributions. In Section 5.1,
we show that these conclusions are critically dependent on the presence of only a single buyer.
With multiple buyers, we give a simple PBE with natural prices in which the seller learns from
buyers’ actions. Moreover, the seller is able to use this knowledge to obtain revenue comparable
with the revenue of the optimal auction run in every round.

5 Multi-Buyer Equilibrium

In what follows, we describe a family of equilibria with n ≥ 2 buyers whose values are inde-
pendent and identically distributed, with valuation function F and discount factor δ ≥ 1/2.
These equilibria have two desirable properties. First, they survive the refinements proposed in
the previous section, and can therefore be considered robust. Second, and in contrast to the
single-buyer case, we show that the seller gets nontrivial discounted revenue. We present the
main ideas of the equilibrium in Section 5.1, and leave the formal description to Appendix D.
In Section 5.2, we discuss revenue guarantees for our equilibria.

5.1 Supply-Limiting Equilibrium

In this section, we informally describe our family of equilibria. A full version of the equilibrium,
with formal descriptions of strategies, can be found in Appendix D. The equilibrium consists of
two phases: an exploration phase, followed by an exploitation phase. In the initial exploration
phase, the seller starts the price low, and gradually raises it over time. Each round, a subset
of the buyers play nontrivial threshold strategies. Those who reject are priced out for the
remainder of the game. Those who accept go on to the next round. Through this process, the
seller progressively winnows out low-valued buyers, while a set of targeted buyers S remains.
The exploration phase ends when the seller has learned a sufficient amount about the targeted
buyers in S. We discuss precise conditions shortly.

Following the exploration phase is an exploitation phase, where the seller ceases to learn,
instead exploiting their current knowledge for revenue. At the end of the exploration phase, all
buyers in the targeted set S share the same history of accepting every past price (except possibly
the final price, in the case that all buyers in S reject). Hence, the seller’s posterior over their
values is identical, supported on some interval [a, b]. The seller now posts single price for the
remainder of the game, e.g. a. The incentives of this phase closely resemble the zero-learning
equilibrium.
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The equilibrium structure described above is compatible with a variety of stopping rules
governing the transition between exploration and exploitation. As examples, the seller could
cease exploration when the price ascends above a certain price target pt, or when the number of
buyers who accepted in the previous rounds falls below a certain number k. The equilibria we
formalize in Appendix D combines these rules, stopping when the price is high or the number of
remaining buyers is less than k. We refer to k as the supply limit of the equilibrium, based on the
observation that the exploration process serves to artificially increase competition to prepare for
the exploitation phase, and we refer to our equilibria of this form as supply limiting equilibria.
In Section 5.2, we show that there always exists a choice of supply limit k and target price pt

that guarantee an equilibrium revenue that is a constant fraction of the revenue the seller could
obtain from offering the Myerson optimal price every round for the entire game.

We now highlight the key aspects of the buyers’ and sellers’ optimization problems.

Buyers: In the exploration phase, the seller posts progressively higher prices, such that once
a buyer i rejects a price that is accepted by any other buyers, then i rejects all prices for the
remainder of the game. If, in a given stage of the exploration phase, buyer i has not yet rejected
a price, they choose whether or not to accept the current price p according to a threshold policy.
Let F be the current beliefs over the value of buyer i, supported on [a, b]. As in the single-item
equilibrium, the threshold equation will depend on the number of buyers who have not yet
rejected. Assume for simplicity that the number of such buyers is n in the current round. Buyer
i’s threshold t solves the equation:

(t− p) = (t− a)
δ

1− δ
F (t)n−1. (1)

The left-hand side represents the utility of a buyer with value t who accepts the current price:
they get t − p utility from the current round, but every subsequent price will be at least t.
The righthand side corresponds to the utility such an agent would obtain from rejecting: they
receive no utility from the current round, but if all other agents reject the current price, then
the seller will post a for the rest of the game, and the buyer will attain a total discounted utility
of δ

1−δ (t− a) from future rounds. This latter event occurs with probability F (t)n−1.
In the exploit phase of the equilibrium, the seller targets the set of buyers who have rejected

the fewest times, and posts the bottom of the support of their current beliefs. These buyers
simply accept each round. In other words, these buyers play the no-learning equilibrium with
the seller for the remainder of the game, and their incentives are the same as in that equilibrium.

Seller The seller’s pricing problem is governed by a simple Markov decision process, in which
they must choose a price for the current round (and implicitly, a threshold for the targeted
buyers) which optimally trades off revenue in the current round against revenue gains from
learning in future rounds. The seller faces a range of prices for which there exist solutions to
equation (1). Let F (·) be the belief distribution for set of buyers who have not yet rejected
a price, and for simplicity, assume that there are n such buyers. If we define R(a, b, j) to be
the discounted expected revenue the seller can obtain in the j-buyer equilibrium with the same
supply limit m and beliefs equal to F conditioned to the interval [a, b], then we may write the
seller’s recurrence for the revenue from posting a price p as:

R(a, b, p, n) = F (t(p))n δ
1−δna+

∑m
j=1

(
n
j

)
(1− F (t(p)))jF (t(p))n−j(pj + δ

1−δ t(p)j)

+
∑n

j=m+1

(
n
j

)
(1− F (t(p)))jF (t(p))n−j(pj + δR(t(p), b, j)) (2)
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Each round of the exploration phase, the seller chooses a price from among those for which the
threshold equation (1) has a solution to maximize the recursively-defined revenue (2).

In the exploitation phase, as mentioned earlier, the seller posts the bottom of the support of
the buyers who have rejected the fewest times. The incentives for this case match those of the
no-learning equilibrium.

5.2 Revenue Guarantees

We now briefly describe the revenue guarantee for the supply-limiting equilibria in the digital
goods model.

Theorem 10. Assume the initial value distribution F is regular monopoly quantile q∗ satisfying
q∗ ≥ 1/n. Then as long as δ ≥ n/(n+ 1), there exists a supply limit k∗ and target price pt such
that the k∗-supply limiting equilibrium described in Section 5.1 is a constant approximation to
the revenue obtained by running the revenue-optimal auction for F each round.

The proof of Theorem 10 can be found in Appendix E. We do not derive an explicit constant
for reasons of readability. Note that the (unstated) constant is independent of the number of
buyers n, and holds for all δ ≥ n/(n+ 1).

To prove our revenue guarantee, we derive a feasible solution to the seller’s dynamic revenue
maximization problem. The optimal solution to their revenue maximization problem, i.e. their
equilibrium strategy, will only be better. This candidate pricing strategy learns as aggressively
as possible, targeting a price which is close to the monopoly price, and a supply limit which is
close to the ex ante demand at the monopoly price in the static pricing problem with n buyers.
The proof of Theorem 10 shows that this candidate pricing policy we propose reaches the target
price with a constant probability, and quickly enough that the discount factor is lower bounded
by a constant.

6 Discriminatory vs. Anonymous Pricing

The intuition from the dynamic sale of a durable good (Coase (1972)) is that the only outcomes
implementable in PBE are the efficient ones. The ability of the seller to restrict supply and earn
nontrivial revenue in the digital goods setting therefore may come as a surprise. In this section,
we present theoretical evidence that the force driving these latter results was our exogenous
restriction of the seller to posting anonymous prices.

To understand the effect of the anonymous prices restriction, we consider a seller who is able
to post a different price for every buyer every round. We show that under a slight strengthening
of our refinements, the introduction of discriminatory pricing destroys the potential for high-
revenue equilibria that we observed in the settings with anonymous pricing. We show that
any equilibrium satisfying our refinements necessarily decouples across buyers into the trivial
zero-learning equilibrium for each buyer. This strongly suggests that the anonymous restriction
on pricing was necessary for the seller to obtain high revenue. Intuitively, an anonymous price
lessens the impact an individual buyer’s information leakage has on the price. Consequently,
the buyer is more willing to leak information by exhibiting nontrivial purchasing behavior. This
allows the seller to learn about buyers’ values with ascending prices.

To enable us to formally discuss repeated sales with discriminatory pricing, we first lay out
additional notation and note the differences between the model with anonymous pricing. The
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timing of the repeated sales game remains largely unchanged: values are realized at the beginning
of the game. Each round, the seller posts prices and buyers decide to accept or reject. The main
difference is that the seller now posts a separate price pik to each buyer i in round k (with the
full vector of prices for round k denoted pk. We assume that buyers are able to observe the
prices offered to all other buyers, as well as other buyers’ purchasing decisions. Consequently,
on-path beliefs are still commonly held among the buyers and the seller (with the exception of
each individual buyer’s knowledge of their own value). Furthermore, buyers may condition their
strategies on the prices offered to other buyers, or on other buyers’ past purchasing decisions.
The negative result of this section holds even if monitoring among buyers is less than perfect,
and possibly holds with weaker assumptions.

We now turn to refinements for this model. The threshold equilibrium refinement extends
essentially unchanged. It still requires that buyers map each pricing decision by the seller (which
for discriminatory pricing means the full vector of prices pk) to a threshold, which guides that
buyer’s purchasing decision. Formally:

Definition 11. A PBE for discriminatory pricing is a threshold equilibrium if for each history
hk and price vector pk, there is a threshold ti(h

k,pk) such that for each agent i, i accepts pik if
and only if vi ≥ ti(hk,pk).

In previous sections, we considered equilibria which were Markovian on path: the pricing
and purchasing decisions depended only on the current beliefs over the values of the buyers, and
not over the past history of play. This had the key consequence that if a seller offered a price
that all types for all buyers would uniformly accept (or uniformly reject), the seller would not
learn, and would consequently post the same price for the rest of the game. For multibuyer
discriminatory pricing, we isolate this property:

Definition 12. A PBE for discriminatory pricing satisfies the no backtracking property if for
any two consecutive rounds k and k + 1 such that the beliefs on a buyer i’s value are equal, i.e.
µki = µk+1

i , then pricing decisions and purchasing decisions for those two rounds must also be
equal. That is, pk = pk+1 and Dk = Dk+1.

With multiple buyers, we note that no backtracking is not strictly weaker or stronger than
the Markovian on path refinement. For example, it is possible in Markovian equilibria for buyers
to condition their purchasing behavior on other buyers’ prices and purchases in such a way that
they may be offered the same prices with the same beliefs and respond in two different ways.
This behavior violates the no backtracking property.

Finally, we extend the notion of natural prices on path to the multibuyer setting:

Definition 13. A PBE for discriminatory pricing satisfies discriminatory natural prices on-
path (or discriminatory natural prices for short), if for each buyer i, every on-path history hk

with beliefs for buyer i supported on [ai, bi], the seller’s price pik for buyer i in round k lies in
[ai, bi).

One could imagine a weaker restriction, where all buyers’ prices are constrained to ∪i[ai, bi).
We motivate the use of the stronger Definition 13 by noting that in the single-shot game, the
optimal price vector for the seller would lie in [ai, bi) for each agent, regardless of the distribution
of buyer i’s value over that interval. Definition 13 therefore requires the seller’s dynamic actions
to be plausible strategies for the single-shot pricing game.

We can now characterize sufficiently simple equilibria, i.e. threshold PBE satisfying no
backtracking and discriminatory natural prices on path. We obtain the following theorem:
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Theorem 14. For digital goods with discriminatory pricing, let the initial value distribution F
be supported on [a, b]. If δ > 1/2, then in any threshold PBE satisfying no backtracking and
discriminatory natural prices, the seller posts the support lower bound, a, every round to every
buyer, and all buyers accept this price, regardless of type. In other words, no learning will occur.

To prove Theorem 14, we extend the ideas that drove the proof of the single-buyer result,
Theorem 5, and show that monotonicity of each buyer’s expected total discounted allocation
is incompatible with our refinements unless each agent’s the threshold is at the bottom of the
support of the value distribution. The proof can be found in Appendix F.

7 Epilogue: Exogenously Limited Supply

In Section 5, we gave a family of equilibria where the seller effectively implements a supply limit
via an ascending price. One natural question is whether equilibrium qualitatively changes when
the seller’s supply limit is given up front as an exogenous constraint. In this section, we make a
small step towards characterizing such settings. We consider a setting with two buyers and one
item for sale. The seller is again constrained to an anonymous price. In any given round, there
is now a possibility that both buyers accept a the current price. When this occurs, the item is
given uniformly at random to one of the buyers. Otherwise, the game proceeds as it did with
digital goods.

In what follows, we describe a simple equilibrium with two buyers whose values are inde-
pendent and identically distributed, with distribution function F , and discount factor δ ≥ 2/3.
This equilibrium shares the two desirable properties of our digital goods equilibrium: first, it
survives the refinements proposed in Section 4, and can therefore be considered robust. Second,
the seller gets nontrivial discounted revenue, which stands in contrast to the robust no-learning
equilibrium of the single-buyer case. We present the main ideas of the equilibrium in Section 7.1
and leave the full formal description to Appendix G. In Section 7.2, we derive revenue guarantees
for our equilibrium.

7.1 Equilibrium Description

Our equilibrium again consists of an exploration phase and an exploitation phase. In the ex-
ploration phase, which starts in the very first round and lasts until one or more buyers reject,
the seller offers prices which will be rejected with positive probability. Once an agent rejects,
the equilibrium enters the exploitation phase, which lasts until the end of the game. If a single
agent triggered the phase by rejecting, the seller ignores this agent, and posts a price at the
bottom of the support of the beliefs for the stronger agent. This price is offered and accepted
for the rest of the game. If both agents rejected to trigger exploitation, then the seller posts a
price at the bottom of the common support of their beliefs. Below, we informally describe the
optimization problems of the seller and the buyers to convey the main ideas of the equilibrium.

Buyers In a given round j of the exploration phase, neither buyer has rejected a price yet. The
seller offers a new price, say, pj , and the buyers, whose beliefs are distributed i.i.d. according
to some posterior Fj supported on [aj , bj ], behave according to a threshold tj(pj) solving the
equation: (

1−Fj(tj)
2 + Fj(tj)

)
(tj − pj) = δ

2(1−δ)(tj − aj)Fj(tj). (3)
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The lefthand side represents the utility of a buyer with type tj who accepts the price pj ,
which is tj−pj times the probability of winning in the current round, with a continuation utility
of zero. The probability of winning in the current round is the probability that the other buyer
rejects, Fj(tj), plus the probability that the other buyer accepts divided by two, as the item is
allocated uniformly at random. The righthand side represents the threshold buyer’s utility from
rejection - if the other buyer accepts, then the seller will only post prices above tj in subsequent
rounds yielding zero continuation utility for the threshold buyer. If both buyers reject, then
they share the item for the rest of the game at price aj . Note that the threshold equation (3)
only implies that a buyer with value tj will be indifferent between accepting and rejecting; it
does not immediately imply that buyers will value greater than tj will prefer to accept, or those
with lower values will prefer to reject. We prove that this is indeed also the case in Appendix G.

In the exploitation phase, the seller targets the buyers with the strongest value distribution
conditioned on past behavior, and prices at the bottom of their support. The buyer incentives
in this phase of the game are similar to those of the no-learning equilibrium of Theorem 1.

Seller In the explore phase, the seller’s optimization problem is an algorithmic pricing problem.
Each round j, the seller must jointly choose a price pj and threshold tj(pj) jointly satisfying the
threshold equation (3), for current beliefs Fj supported on [aj , bj ]. They know from the buyers’
strategies that such prices will be met with a threshold response. It therefore suffices for the
seller to maximize the following value function:

R(aj , bj , pj) = (1− Fj(tj(pj)))2(pj + δR(tj(pj), bj))

+2Fj(tj(pj))(1− Fj(tj(pj)))(pj +
tj(pj)δ
1−δ ) + Fj(tj(pj))

2(
ajδ
1−δ ),

(4)

where R(x, y) is the optimal continuation revenue from the equilibrium with values distributed
according to F conditioned to [x, y] and tj(pj) is the threshold corresponding to price pj . The
three terms of this function represent the three possible outcomes to the current round: both
buyers accept, exactly one accepts, and both reject.

In our presentation of the equilibrium, we leave the specific price path selected by the seller as
the implicit solution to the above optimization, and note that any policy for choosing prices and
corresponding thresholds satisfying the threshold equation will support threshold behavior by
the buyers. To find a policy arbitrarily close to optimal, one may discretize value space and solve
the Markov decision problem associated with the value function (4) by value iteration, though
we make no claim as to the computational efficiency of this method. For a computationally
constrained buyer, we give in the next section a computationally tractiable threshold-supported
pricing policy which obtains provably high revenue, and which serves as a lower bound to the
seller’s revenue in equilibrium.

7.2 Revenue Guarantees

We now argue that if distributions are well-behaved, the revenue of the equilibrium outlined in
the previous section (and discussed in full detail in Appendix G) has high revenue. Specifically,

we assume that the hazard rate f(v)
1−F (v) of the distribution is increasing in v - a standard assump-

tion in mechanism design. Note that a similar holds for any regular distribution, parametrized
by the quantile of the monopoly price. As a benchmark, we use the revenue that the seller would
obtain if they used the optimal auction in every round (e.g. Myerson (1981)). By Theorem 3,
this benchmark is an upper bound on the seller’s revenue in any PBE. Our revenue result is the
following:

16



Theorem 15. Assume the value distribution F of the two buyers has a monotone hazard rate,
and assume δ ≥ 2/3. In the equilibrium described in Section 7.1 and Appendix G, the seller
obtains revenue which is at least 1

3e2
of the revenue of the optimal auction run each round.

The proof follows the same strategy as Theorem 10. To argue the theorem, we first observe
that in the exploration phase of the equilibrium, the seller may offer any price which has a
threshold response, and the arguments in the previous section ensure that buyers will be incen-
tivized to adhere to threshold responses. It follows that we may analyze any sequence of prices
for the exploration phase, and as long as each price has a threshold response, the resulting
revenue will be a lower bound on the actual revenue of the seller.

Rather than compare ourselves directly to the benchmark of the optimal single-shot revenue
each round, we will upper bound this benchmark and compare our equilibrium’s revenue to this
upper bound. The optimal single-shot revenue attainable from n IID buyers is concave in n.
It follows that twice the optimal single-shot revenue for one buyer, which can be obtained by
posting a price, is an upper bound on our revenue benchmark. Formally, our upper bound is
2(1−F (p∗))p∗

1−δ , where p∗ is the single-buyer monopoly price, which maximizes (1− F (p))p.
To relate our equilibrium revenue to this upper bound, we imagine the seller choosing a

sequence of prices which increases the threshold quickly until it reaches p∗, after which the seller
voluntarily enters the exploit phase. Assuming both agents have value above p∗, the seller will
receive revenue of p∗ in perpetuity starting as soon as the threshold reaches this point. By
upperbounding the time it takes for this to occur, we can lowerbound the expected revenue
from this sequence of prices, and therefore the revenue from the price sequence actually selected
by the seller in equilibrium.

First, consider an arbitrary round j of the explore phase, where the current beliefs are over
an interval [aj , bj ] with CDF Fj . We argue that there is always a way for the seller to induce a
threshold t which learns “quickly.” Formally:

Lemma 16. In the explore phase with beliefs supported on [aj , bj ], there always exists a price
p ≥ aj inducing the threshold t which satisfies Fj(t) = 1−δ

δ .

Proof. Note that the threshold equation for this stage can be rearranged as:

(t− aj)Fj(t)
δ

1− δ
= (Fj(t) + 1)(t− p).

Substituting in Fj(t) = 1−δ
δ and solving for p yields p = t− δ(t− aj).

To obtain our bound, we will assume the seller offers the following sequence of prices:

• If there exists some p ∈ [aj , bj ] inducing threshold p∗, offer p.

• Otherwise, offer a price which induces t satisfying Fj(t) = 1−δ
δ .

We now argue that such a sequence of prices will eventually induce a threshold of p∗, if
buyers’ values are above p∗.

Lemma 17. If both sellers have value at least p∗, then the above sequence of prices eventually
induces threshold p∗.
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Proof. By Lemma 16, the seller will eventually reach a stage where the threshold t satisfying
Fj(t) = 1−δ

δ is greater than p∗. We show that in this case, there is a price inducing a threshold
t = p∗.

Assume the current beliefs for buyers who haven’t rejected are distributed according to Fj
with support [aj , bj ]. Let t∗ be the threshold for which Fj(t

∗) = 1−δ
δ , and assume t∗ > p∗. Note

that the threshold equation can be rearranged as:

t− p
t− aj

=
Fj(t)

Fj(t) + 1

δ

1− δ
(5)

Consider substituting t = p∗ in the righthand side of (5). Since t∗ > p∗, and since this function
on the righthand side is increasing in t, we have:

0 <
Fj(p

∗)

Fj(p∗) + 1

δ

1− δ
<

Fj(t
∗)

Fj(t∗) + 1

δ

1− δ
< 1.

In other words, the righthand side of (5) for t = p∗ lies in the interval [0, 1]. Note that the
lefthand side, with t = p∗, ranges from 0 at p = p∗ to 1 at p = aj . Consequently, there is a price
in [aj , p

∗] which induces p∗ as a threshold.

We can now argue that under the above sequence of prices, the exploration phase will reach
threshold p∗ quickly if both agents have values above p∗. Formally:

Lemma 18. Let x = 1−δ
δ . If both sellers have value at least p∗ and F (p∗) ≤ 1− 1/e then after

1/x+ 1 rounds of the exploration phase using the price sequence defined above, we will have that
the lower bound of the support is p∗.

Proof. Let tj be the threshold induced in the jth stage of the exploration phase, and assume
tj < p∗. From the above analysis, we have that F (tj) = 1− (1− x)j . Set If we set j = 1/x, we
obtain

F (tj) = 1− (1− x)1/x ≥ 1− 1/e.

It therefore must be that after at most 1/x rounds, the exploration phase terminates with the
threshold reaching p∗. In the subsequent round, the lower bound of the support will be the
previous round’s threshold, p∗.

Lemma 19. If F (p∗) ≤ 1−1/e then the equilibrium obtains revenue at least 1
1−δ

2
3ep
∗(1−F (p∗))2.

Proof. We lower bound the revenue with the revenue from the sequence of prices described
above. The probability that both agents have values above p∗, and therefore that the threshold
reaches p∗, is (1 − F (p∗))2. By Lemma 18 the discount factor after reaching p∗ is at most

δ1+
δ

1−δ ≥ 2
3e . After p∗ is reached the seller prices the item at p∗ for all remaining rounds and the

item is accepted with probability one for a total of 1
1−δp

∗ revenue. Overall the revenue obtained

by the seller with this price sequence is therefore at least 1
1−δ

2
3ep
∗(1− F (p∗))2.

Proof of Theorem 15. Let OPT denote the total revenue from running the optimal auction for
two buyers on F . Our benchmark for revenue is OPT/(1− δ). By concavity of the revenue we
have that OPT ≤ 2p∗(1− F (p∗)). By Lemma 19 the equilibrium gets revenue

1

1− δ
2

3e
p∗(1− F (p∗))2 ≥ OPT

1− δ
1

3e
(1− F (p∗))

For distributions satisfying the monotone hazard rate assumption, it is a standard fact that
F (p∗) ≥ 1 − 1/e. We therefore have that the revenue of our equilibrium is at least OPT

1−δ ·
1

3e2
,

proving the theorem.
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A No-Learning Equilibrium

In this appendix, we give the full description of the no-learning equilibrium. The seller’s strategy
can be found in Algorithm 1, and the buyer’s strategy in Algorithm 2. The beliefs which support
this strategy profile are straightforward: if a buyer has ever accepted a positive price or rejected 0
(neither of which is on-path), the seller believes the buyer’s value is deterministically the highest
value in the initial support. Otherwise, the seller learns nothing about the buyer’s value and
offers the item for free every round. Moreover, it is clear from inspection that this equilibrium
survives the simplicity refinement.
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Algorithm 1: Zero-Revenue Equilibrium - Seller’s Strategy

Input : Purchasing history hk, initial belief support [a, b].
Output: Price pk

if Buyer has ever accepted a positive price then
pk = b;

else if Buyer has ever rejected a price of 0 then
pk = b;

else
pk = 0;

Algorithm 2: Zero-Revenue Equilibrium - Buyer’s Strategy

Input : Purchasing history hk, belief support [a, b], value v, price pk
Output: Purchasing decision for round k

if pk = 0 then
Accept;

else if pk > 0 then
if Buyer has ever accepted a positive price then

Accept if and only if v ≥ pk;
else if Buyer has ever rejected a price of 0 then

Accept if and only if v ≥ pk;
else

Reject;

B Proof of Theorem 2

We will explicitly construct an equilibrium where the seller offers price p every round, no matter
the buyer’s action. We give the seller’s strategy in Algorithm 3, and the buyers’ strategy in
Algorithm 4. Beliefs are straightforward - on-path, they are updated after the first buying
decision and remain constant thereafter. If the seller has caused an off-path history by posting a
price other than p, then they expect positive prices to be rejected for the rest of time, as in the
zero-revenue equilibrium. As in the latter equilibrium, if a buyer accepts a positive price, then
the seller assumes that they have the highest possible value for their distribution, and posts this
value as the price until the end of time.

Algorithm 3: Folk Theorem Equilibrium - Seller’s Strategy

Input : History hk, Initial belief supports [ai, bi] for all buyers i
Output: Price pk
if p[k − 1] = (p, . . . , p) then

pk = p;
else if Any buyer has accepted a price other than p or 0 then

pk = b;
else

pk = 0
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Algorithm 4: Folk Theorem Equilibrium - Buyer i’s Strategy

Input : History hk, Value vi, Price pk
Output: Purchasing decision for round k
if p[k] = (p, . . . , p) then

Accept if and only if vi ≥ pk;
else if Buyer i has accepted a positive price other than p or 0 then

Accept if and only if vi ≥ pk;
else if pk 6= 0 then

Reject;
else

Accept;

To see that the strategies in Algorithms 3 and 4 are a PBE, we first argue that the seller is
best responding. We consider the cases as they are stated in Algorithm 3:

• All prices offered have been p: In this case, buyers will behave as price takers if pk = p,
which might yield positive revenue. If the seller offers any other positive price, buyers will
reject and demand the items for free for the rest of the game.

• A price other than p has been offered and accepted by buyer i: This is off-path. We may
therefore set the seller’s beliefs to be the highest value in the initial support, i.e. vi = b.
Moreover, according to the buyers’ strategy, i will be a price-taker from now on. It follows
that it is optimal for the seller to set a price of b.

• A price other than p has been offered, but no buyer has accepted a positive price other than
p: In this case, buyers will only accept a price of 0, so the seller cannot get any utility
with any price; they might as well post 0.

We now argue that an arbitrary buyer i is best responding, using the cases in Algorithm 4.

• All prices offered, including pk, have been p: The seller will continue offering this price
no matter what the buyer does. It follows that the buyer should accept if they could get
positive utility from doing so.

• Buyer i has accepted a positive price other than p or 0: In this case, the seller believes that
vi = b, and will post price b forever. Buyer i should therefore reject, unless their value is
b, in which case they weakly prefer to accept.

• A price other than p has been offered, the only positve price accepted has been p, and
pk 6= 0. Buyer i will get at most utility vi − pk from accepting, as all future prices will
be 1. Rejecting, meanwhile, will yield utility of δ

(1−δ) , as the seller will offer the items for

free for all subsequent rounds, and all buyers will accept. If δ ≥ 1/2, then rejecting will
be preferable for any choice of vi and pk.

• A price other than p has been offered, the only positive price accepted has been p, and
pk = 0: Rejecting will not change the seller’s subsequent prices, and accepting will yield
positive expected utility, so accepting is optimal.
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C Alternate Sufficient Conditions for Eliminating Learning Equi-
libria

In this appendix, we give an alternate refinement which selects out all but equilibria in which
the seller learns nothing about the buyer, and buyers accept every round. As in Section 4, we
require that the seller posts prices which are above the bottom of the support of beliefs. Rather
than upperbounding prices offered by the seller, we require that the buyers accept a price at the
bottom of the support, whenever it is offered. Formally:

Definition 20. A threshold PBE of the single-buyer game respects lower bounds if the following
conditions hold for every history hk with beliefs lower bounded by a:

• the buyer accepts any price at or below a.

• σkS(hk) ≥ a.

Theorem 21. In the single-buyer game, let the value distribution F be supported on [a, b], with
a > 0. If δ > b

a+b , then in any threshold PBE which respects lower bounds, the seller posts a
every round, which is accepted by all buyers. In other words, no learning will occur.

Note that Theorem 21 does not require that strategies be Markovian on path, though adding
this requirement obviously does not change the result.

To prove the theorem, we show that any threshold PBE that respects lowerbounds must
have a non-monotone cumulative allocation function around any threshold other than a or b.
To simplify our analysis, we will consider only threshold PBE in which the threshold buyer for
each round accepts in the first round. Moreover, since the seller never will offer a subsequent
price below t, we may have the threshold type reject for the remainder of the game. For any
threshold PBE, one can change the strategies of threshold buyers to an accept followed by
nonstop rejection without violating equilibrium, as such a sequence of actions is one of their
optimal choices. The change doesn’t affect the seller’s expected utility because such agents are
a measure zero set.

Proof of Theorem 21. Consider a threshold PBE with value distribution supported on [a, b].
Assume the threshold buyer in the first round behaves as described above: they accept in the
first round, and then reject in every subsequent round. In this equilibrium, we have X(t) = 1.
We will show that there is a lower-valued agent with with total discounted allocation strictly
greater than 1. This violates Lemma 7 unless t = a, proving the theorem.

We will first find a buyer with value less than t with high total discounted payments. To do
this, note that after seeing a rejection in the first round, the seller could offer a for the rest of the
game, which by the natural threhsolds assumption would yield revenue a δ

1−δ . Since the seller

is best responding, this implies that E[P (v) | v ≤ t] ≥ a δ
1−δ . Since P (v) is increasing, it must

be that there is a set of values with positive measure in [a, t] with total discounted payments at
least a δ

1−δ . Choose some v from this set. We have P (v) ≥ a δ
1−δ .

We now lowerbound X(v). To do this, note that the buyer could choose to reject every
round, so U(v) ≥ 0. This in turn implies that vX(v) ≥ P (v), and therefore that X(v) ≥ a

v
δ

1−δ .

By our assumption that δ > b
a+b , we have:

X(v) ≥ a
v

δ
1−δ ≥

a
b

δ
1−δ > 1.
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This yields the desired non-monotonicity of X(·), contradicting Lemma 7. It must therefore be
that t = a. The seller does not learn in such an equilibrium, as the same arguments will hold
for every subsequent round.

D Equilibrium for Digital Goods and Multiple Buyers

In this appendix, we describe a family of equilibria for n ≥ 2 buyers with unlimited supply, and
prove that the sellers and buyers are best responding. Our equilibria are parametrized by an
integer k ∈ {1, . . . , n}, which we call the supply limit, and a price pt, which we call the target
price. In rough terms, the seller starts with a low price, which gradually increases from round
to round. Buyers drop out as the price grows too high. The seller stops raising the price when
the number of buyers who remain is k or fewer, or when the price rises above pt. Hence, the
seller loosely implements a k-item ascending price auction over many rounds of sale.

We can more precisely describe our equilibrium by dividing it into an exploration phase
and an exploitation phase. In round j of the exploration phase, the seller chooses a price pj
and threshold tj(pj) which satisfy a threshold equation, described below. Buyers with value
below the threshold reject pj , and buyers with value above accept. The price and threshold rise
from round to round, until eventually, one of three events occurs, each of which triggers the
exploitation phase:

• Some number of buyers between 1 and the supply limit k accept pk, while every other
buyer rejects. The buyers who accepted all have value at least tj(pj), so the seller posts
this price for the rest of the game.

• All buyers reject pk. Since this is the first round in which no buyer has accepted, there is
some set of buyers who accepted the previous rounds price pj−1. These buyers have value
at least the previous round’s threshold tj−1(pj−1). The seller posts this price for the rest
of the game.

• More than k buyers accept pj , but the corresponding threshold tj(pj) exceeds the target
price. The seller posts tj(pj) for the rest of the game.

In the exploitation phase, the seller posts the same price p for the rest of the game. The exact
price p is determined by the cases discussed above. The buyers whose values exceed p accept
in every subsequent round. Those whose values do not exceed p reject in every subsequent
round. Consequently, learning ceases; the seller instead extracts the lower bound of the support
of the buyers with the highest such lower bound. This halt in price exploration is enforced with
strategies that resemble those of the no-learning equilibrium of Theorem 5.

In the exploration phase, the prices offered each round and the buyers’ responses are jointly
governed by a threshold equation. Note that the exploration phase ends if all buyers reject the
current price. Hence, in round j of the exploration phase, some set of buyers has accepted the
previous round’s price (and every previous price). Assume there are nj such buyers. Let Fj
denote the CDF of the common beliefs about these buyers’ values, and let aj denote the lower
bound of this distribution’s support. The current round’s price pj and threshold tj must jointly
satisfy the equation:

(tj − pj) =
δ

1− δ
(tj − aj)Fj(tj)nj−1. (6)
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The threshold equation states that a buyer with value tj must be indifferent between accepting
pj and rejecting it. The lefthand side of (6) represents such a buyer’s utility from accepting; they
get utility tj−pj from the current round, but do not earn any further utility, as all future prices
will be at least tj . The righthand side represents the threshold buyer’s utility from rejecting.
They receive no utility from the current round. Future prices will be at least tj unless all other
buyers also reject pj , which occurs with probability Fj(tj)

nj−1. If this is the case, the seller offers
the price aj for the remaining rounds. The utility from accepting this price for the remainder
of the game is δ

1−δ (tj − aj).
Given a price pj for round j, there may be be multiple choices of tj satisfying the threshold

equation (6). For any way of choosing such a threshold, there exists an equlibrium in which
buyers’ strategies all reflect this choice. To facilitate revenue analysis, we employ the following
threshold selection rule:

• If the target price pt = satisfies (pt − pj) = δ
1−δ (pt − aj)Fj(pt)nj−1, select tj = pt.

• Otherwise, choose the highest threshold tj satisfying the threshold equation.

Every threshold selection rule determines a path for the posted price each round, which can
be derived by recursively solving the seller’s revenue maximization problem. In particular, let
tba(pj ; nj) be a threshold selection rule which depends only on the current price pj , the number
of buyers nj who have not yet rejected, and the current beliefs, which are fully characterized in
threshold equilibria by the limits of the support [aj , bj ] of buyers who have not yet rejected a
price. The rule described above is one such selection rule. The seller chooses the current price
pj to maximize the following recursive expected revenue function:

R
bj
aj (pj ; nj) = F (t

bj
aj (pj ; nj))

nj δ
1−δnjaj

+

k∑
i=1

(
nj
i

)
(1− F (t

bj
aj (pj ; nj)))

iF (t
bj
aj (pj ; nj))

nj−i(ipj + δ
1−δ it

bj
aj (pj ; nj))

+

nj∑
i=k+1

(
nj
i

)
(1− F (t

bj
aj (pj ; nj)))

iF (t
bj
aj (pj ; nj))

nj−i(ipj + δR
bj

t
bj
aj

(pj ;nj)
(i)),

where k is the supply limit parameter of the equilibrium, and Ryx(i) denotes the seller’s optimal
expected discounted revenue from a continuation in which there are i buyers who have not
rejected, with beliefs supported on [x, y].

The first term in the revenue recurrence is the revenue from the event that all buyers reject pj .

This occurs with probability F (t
bj
aj (pj ; nj))

nj and causes the seller to post aj for the remainder

of the game. This price will be accepted by nj buyers for δ
1−δ discounted rounds. The first sum

represents the events where some number i ≤ k buyers accepts pj , which triggers the exploitation

phase. The probability of this event for a given i is
(nj
i

)
(1− F (t

bj
aj (pj ; nj)))

iF (t
bj
aj (pj ; nj))

nj−i,

and the revenue from this event is ipj for round j’s revenue, plus δ
1−δ it

bj
aj (pj ; nj) from selling

to i buyers at price t
bj
aj (pj ; nj) for the rest of the game. Finally, the second sum accounts

for the revenue from i > k buyers accepting price pj . In this case, the seller again makes ipj
revenue from round j, but additionally solves a smaller version of the same pricing problem on

support [t
bj
aj (pj ; nj), bj ] with i buyers who have not yet rejected, yielding continuation revenue

δR
bj

t
bj
aj

(pj ;nj)
(i). Note that as long as t

bj
aj (pj ; nj) depends only on the current price pj , number nj
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Algorithm 5: Seller’s Strategy

Input : Purchasing history hj , Support bounds {(aji , b
j
i )}ni=1, First-round common

support bounds (a, b).
Output: Price pj+1

if ∃ ` ≤ j and i such that i accepts p` but all types for i should reject p` then
Let `∗ be the most recent such `;
if ∃m > `∗ such that pm < b then

pj+1 = 0;
else

pj+1 = b;

else

Sj = argmaxi a
j
i ;

aj = maxi a
j
i ;

bj = maxi b
j
i ;

if k or fewer agents accepted in round j or a ≥ pt then
pj+1 = a;

else

pk+1 = arg max
p
Rb

j

aj (p ; |Sk|);

of buyers who have not yet rejected, and limits of the support [aj , bj ], then the price maximizing

R
bj
aj (pj ; nj) will depend only on nj , aj , and bj , and hence, will produce a Markovian equilibrium

on path.
Having characterized the exploration and exploitation phases of our equilibrium, we now

briefly describe the responses to off-path actions. As mentioned, the incentives in the exploitation
phase resemble those of the zero-learning equilibrium of Theorem 5. We therefore describe only
the exploration phase here. For any buyer i, rejecting of a price pj and later accepting of a price
pj′ ≥ pj is incompatible with the strategy of any type for i. Consequently, the belief updates
maybe arbitrary. After such an unexpected acceptance, the beliefs for buyer i are updated to a
pointmass on the highest value in the support of the original distribution. The seller offers this
high price for the rest of the game, preventing the deviating buyer from obtaining any future
utility. The seller may deviate in the exploration phase by offering a price pj for which there is
no threshold tj solving (6). In this case, all buyers reject pj . The seller posts 0 for the remainder
of the game, and the buyers reject any positive price, emulating the strategies of the no-learning
equilibrium of Theorem 5.

A full description of the strategies and belief updates of the buyers and seller can be found
in Algorithms 5, 6, and 8. Algorithm 7 describes the threshold selection rule we will use for
revenue analysis.

Theorem 22. The strategies and belief and belief updates described in Algorithms 5, 6, and 8
are a PBE as long as δ ≥ 1/2.

We argue buyer and seller incentives separately, in Sections D.2 and D.3, respectively. Before
performing this analysis, we will characterize the buyers’ and seller’s incentives from taking
actions that deviate from the equilibrium path in Section D.1.
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Algorithm 6: Buyer i’s Strategy

Input : Purchasing history hj , Support bounds {(aji′ , b
j
i′)}

n
i′=1, value vi, price pj+1

Output: Purchasing decision for round j + 1
if ∃ ` ≤ j such that i accepted p` but all types for i should reject p` then

Let `∗ be the most recent such `;
if pm = b for all `∗ ≤ m ≤ j then

Accept if and only if pj+1 ≥ vi;
else

Accept if and only if pj+1 = 0;

else if ∃ ` ≤ j and i′ 6= i such that i′ accepts p` but all types for i′ should reject p` then
Accept if and only if pj+1 = 0;

else if ∃` ≤ j such that p` > p`+1 and D` 6= Rn then
Accept if and only if pj+1 = 0;

else
for all ` ≤ j do

S` = argmaxi′ a
`
i′ ;

a` = maxi′ a
`
i′ ;

b` = maxi′ b
`
i′ ;

if ∃` ≤ j such that D` = Rn or |S`| ≤ k or a` ≥ pt then
if ∃m > ` such that pm 6= a` then

Accept if and only if pj+1 = 0;
else

Accept if and only if pj+1 = aj ;

else if i /∈ Sj or pj+1 < a` then
Accept if and only if pj+1 = 0;

else

Accept if and only if vi ≥ t
bj
aj

(pj+1 ; |Sj |);

D.1 Off-Path Incentives

In this section, we show that for both the seller and the buyer, deviating from on-path behavior
is costly; the seller sacrifices all revenue from the current round onward, and buyers sacrifice the
opportunity to obtain utility in future rounds. Moreover, we will characterize the continuations
derived from off-path histories, and show that their incentives are similar to the zero-learning
equilibrium of Theorem 5.

Consider a history hj up to round j in which at least one agent (either buyer or seller) has
deviated from the equilibrium path. For the seller, the set of possible deviations consists of:

• Lowering the price in the exploration phase after a round in which one more more buyers
accepts.

• Posting a price strictly below the support of the set of targeted buyers Sj in the exploration
phase.

• Posting a price other than the bottom of the support aj of the buyers being targeted in
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Algorithm 7: Threshold Selection Rule

Input : Support bounds (aj , bj), price pj+1, integer nj

Output: Threshold tb
j

aj
(pj+1 ; nj)

if (pt − pj+1) = δ
1−δ (pt − aj)F bj

aj
(pt)nj−1 then

Return pt;

else if ∃t such that (t− pj+1) = δ
1−δ (t− aj)F bj

aj
(t)nj−1 then

Return max{t : (t− pj+1) = δ
1−δ (t− aj)F bj

aj
(t)nj−1};

else
Return ∞;

the exploitatation phase.

• Posting a price other than the top of the initial support b after a buyer has taken an
off-path action.

Note that by the definition of the buyers’ strategies in Algorithm 6, buyers will respond to a
deviation by the seller by entering a continuation in which they adopt the strategies from the
zero-learning (and zero-revenue) equilibrium of Theorem 5 (which are best responses as long as
δ ≥ 1/2). Hence, the seller cannot obtain any revenue after taking an off-path action, and any
prices in a continuation in which the seller is the agent to most recently deviate will match the
zero-learning equilibrium.

Now consider the consequences of an off-path action by one or more buyers. Buyer actions
are off-path when the buyer accepts a price that all types for that buyer would reject (according
to the equilibrium strategies and the current beliefs). As long as the seller has not taken one of
the aforementioned deviations after the off-path buyer actions, the seller strategy dictates that
they offer a high price of b, which is a best response because the deviating buyers become price-
takers (and beliefs update for those buyers to pointmasses on b). Consequently, any buyer who
deviates from the equilibrium path will not attain any utility in future rounds. We summarize
these conclusions below:

Lemma 23. Consider a history hj in which one or more agents takes an off-path action. If
the seller is the most recent agent to take such an action, the seller posts a price of 0 for every
subsequent round. If one or more buyers are the most recent agents to take an off-path action
by accepting a price which all types would reject according to the current beliefs, the seller posts
a price of b for every subsequent round (which is rejected by the buyers). These strategies are
best responses as long as δ ≥ 1/2.

Corollary 24. If the seller takes an off-path action, they earn no revenue in future rounds.

Corollary 25. If a buyer takes an off-path action, they earn no utility in future rounds.

Corollaries 24 and 25 will facilitate the on-path analysis in Sections D.2 and D.3.

D.2 Buyer Incentives

We now show that in any on-path history, it is a best response to play the strategy described
in Algorithm 6. This implies that the buyers are best responding. We analyze the exploration
phase and exploitation phases separately.
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Algorithm 8: Belief updates

Input : Purchasing history hj+1, Current support bounds {(aji , b
j
i )}ni=1, First-round

common support bounds (a, b).
Output: Updated support bounds {(aj+1

i , bj+1
i )}ni=1.

Sj = argmaxi a
j
i ;

for i ∈ {1, . . . , n} do
if all types for i should reject pj+1 then

if buyer i rejected pj+1 then

aj+1
i = aji , b

j+1
i = bji

else

aj+1
i = b, bj+1

i = b

else if all types should accept then
if buyer i accepted then

aj+1
i = aji , b

j+1
i = bji

else

aj+1
i = b, bj+1

i = b

else
if buyer i accepted then

aj+1
i = tb

j

aj
(pj+1, |Sj |), bj+1

i = bji
else

aj+1
i = aji , b

j+1
i = tb

j

aj
(pj+1, |Sj |)

Exploration Phase In the exploration phase, the seller posts a price which increases from
round to round. Buyers who have not yet rejected play according to a nontrivial threshold
strategy given by the threshold equation (6). Buyers who have rejected in the past continue to
reject the current price, as it is above their value. For these latter buyers, accepting a price after
rejecting would cause the seller to offer the top of the initial support, b, for the remaining rounds,
so there is no utility to be gained from any deviation. For the buyers who play according to
equation (6), we need to show that buyers with value above the threshold tj prefer to accept, and
those with value below tj prefer to reject. We argue from the perspective of an arbitrary buyer
i who has not yet rejected a price in the exploration phase (and is therefore being “targeted”
by the seller), facing a price pj for round j. We assume the current support of beliefs for i and
all other buyers who are being targeted is [aj , bj ], and that there are nj such buyers. We denote
the CDF for the current beliefs of these buyers by Fj(·).

Assume vi < tj . If buyer i accepts pj , all subsequent prices will be at least tj . Hence, the
utility from accepting, uA, is upper bounded as uA ≤ (vi − pj). A lower bound on the utility
from rejecting, uR, comes from noting that with probability F (tj)

nj−1, all other targeted buyers
will reject as well. In this event, the seller posts a price of aj for the rest of the game, yielding a
utility of F (tj)

nj−1(vj−aj) δ
1−δ . The utility difference between rejecting and accepting therefore

satisfies:
uR − uA ≥ F (tj)

nj−1(vi − aj) δ
1−δ − (vi − pj).

Note that because the seller is offering an on-path price, pj ≥ aj , so tj − pj ≤ tj − aj , and
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hence the threshold equation (6) implies that Fj(tj)
nj−1 δ

1−δ ≤ 1. Writing x = tj − vi, we have:

uR − uA ≥ F (tj)
nj−1(tj − x− aj) δ

1−δ − (tj − x− pj). (7)

Applying the threshold equation (6), we can rearrange (7) as

uR − uA ≥ x(1− F (tj)
nj−1 δ

1−δ ) ≥ 0,

which implies that rejecting is optimal.
Now assume vi ≥ tj . We must prove that it is optimal for buyer i to accept, i.e. uA ≥ uR.

We first lower bound uA by noting that buyer i gets utility vi − pj from accepting in round j,
and from the event that all other buyers reject an additional Fj(tj)

nj−1(vi− tj) δ
1−δ , as the seller

will post price tj for the rest of the game, which buyer i may accept. In total, we have that uA
is at least (vi − pj) + Fj(tj)

nj−1(vi − tj) δ
1−δ .

To upper bound uR, we consider two events: the event that every other buyer also rejects,
and the event that at least one other buyer accepts. In the former event, which occurs with
probability Fj(tj)

nj−1, the seller posts aj for the rest of time. The best buyer i can do is
to accept this price, yielding a utility contribution of Fj(tj)

nj−1(vi − aj)
δ

1−δ . In the latter

event, which occurs with probability 1 − Fj(tj)nj−1, the seller may accept in one later round.
This acceptance causes i’s beliefs to update to a pointmass on b, and leads the seller to post
this price every subsequent round. Consequently, buyer i may only accept for one round after
rejecting. The maximum utility attainable from such a purchase is δ(vi − tj), as the discount
factor will always be at most δ and the price at least tj . Hence, we have an upper bound of
Fj(tj)

nj−1(vi − aj) δ
1−δ + δ(1− Fj(tj)nj−1)(vi − tj). Combining the upper and lower bounds, we

obtain:

uA−uR ≥ (vi− pj) +Fj(tj)
nj−1(vi− tj) δ

1−δ −Fj(tj)
nj−1(vi− aj) δ

1−δ − δ(1−Fj(tj)
nj−1)(vi− tj)

Writing x = vi − tj and applying the threshold equation, we obtain:

uA − uR ≥ x(1 + Fj(tj)
nj−1 δ

1−δ − Fj(tj)
nj−1 δ

1−δ − δ(1− Fj(tj)
nj−1))

= x(1− δ(1− Fj(tj)nj−1) ≥ 0.

Consequently, buyer i prefers to accept pj .

Exploitation Phase In the exploitation phase, there are two classes of buyers: those being
targeted and those who dropped out at an earlier price. If any number of buyers accepted the
price in the round that triggered the exploitation phase, those buyers are the targeted set. If all
buyers rejected, then the targeted set is the set of buyers who accepted in the previous round.
All other buyers dropped out in a prior round.

For the buyers who dropped out, the current price is above their value, and will remain
that way for the remainder of the game. They consequently are indifferent between all actions,
including those specified by the equilibrium strategy. The buyers being targeted will be offered a
price at the bottom of the support of the current beliefs on their values. This price is unresponsive
to their action, so they would prefer to accept every round.
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D.3 Seller Incentives

We break the seller’s incentives into the exploration phase and the exploitation phase as usual. In
the exploration phase, the choice is between offering an on-path price with a threshold response
and an off-path price without. An off-path price will be rejected, and buyers will initiate
continuation strategy in which they reject all positive prices yielding no revenue. It is therefore
optimal for the seller to offer a price with a threshold response each round. In the exploitation
phase, the in buyers being targeted will only accept the lower bound of the support of the beliefs
on their values (and any other price will initiate a zero-revenue response from the buyers), so
offering the lower bound is clearly optimal.

E Proof of Theorem 10

In this appendix, we prove Theorem 10: there exists a supply limit and target price for the
digital goods equilibrium such that the seller obtains revenue which is a constant approximation
to the optimal single-shot revenue for the digital goods setting per round. The proof mirrors
that of the revenue result for limited supply in Appendix ??. We give a pricing policy for the
seller which is supported by threshold responses, and achieves the desired revenue guarantee.
Since the seller chooses the revenue-optimal such pricing policy, this revenue is a lower bound
on the seller’s revenue.

Our choice of supply limit will depend on the quantile q∗ of the monopoly price p∗ = maxp(1−
F (p))p. Recall that we define the quantile of p∗ as q∗ = 1 − F (p∗). By assumption, q∗ ≥ 1/n.
For q∗ ∈ [1/n, 2/(n + 1)], we will use a supply limit of k∗ = 1. For q∗ ∈ [2/(n + 1), 1], we use
k∗ = min(bq∗(n + 1)c − 1, n− 1). The constant-approximation result is robust to the choice of
supply limit, in the sense that any supply limit that yields a comparable ex ante probability of
sale to the optimal mechanism will suffice. The particular choice of k∗ we adopt is for ease of
technical exposition.

The pricing policy we use as a revenue benchmark will post prices with high thresholds in
an attempt to learn aggressively and reach the target price as quickly as possible. The pricing
policy will target one of two prices, again selected for ease of analysis. If q∗ ≥ 2/(n + 1),
our pricing policy will target the price with quantile min(bq∗(n + 1)c/(n + 1), n/(n + 1)). If
q∗ ∈ [1/n, 2/(n + 1)), we will instead target quantile 2/(n + 1). For regular distributions,
offering prices close to the monopoly price produces similar revenue, so this will suffice to prove
a constant approximation, assuming the price target is reached quickly. We will also prove this
latter fact, which will imply the theorem.

We first describe the pricing policy. Let pt denote the target price described previously. After
each round j, there is a set Sj of buyers who have either accepted in the previous round, or if
all buyers rejected in the previous round, then accepted in the round before that. Let nj = |Sj |,
and let Fj denote the common CDF of the beliefs of the agents in Sj , with support [aj , bj ]. The
pricing policy is:

In Section E.1, we prove that the policy in Algorithm 9 is valid: in each round where more
than k∗ buyers have yet to reject, either the seller can post a price with threshold equal to pt or

there exists a price which induces a threshold t with Fj(t) = nj−1

√
1−δ
δ . Consequently, the policy

will reach the price pt as long as at least k∗ + 1 buyers have value above pt. In Section E.2, we
then prove that this pricing policy attains a constant fraction of the revenue that would result
from posting p∗ to each agent each round (i.e. the Myerson revenue-mechanism for the initial
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Algorithm 9: Pricing policy to lower bound equilibrium revenue.

if Fj(p
t) = 0 then

Post pt.
else if k∗ or fewer buyers accepted last round then

Post aj .
else if There is a price p with threshold t(p) = pt then

Post p.
else

Post a price p which induces threshold t(p) satisfying Fj(t(p)) = nj−1

√
1−δ
δ .

distribution).

E.1 Validity of Pricing Policy

We now prove that the pricing policy of Algorithm 9 is valid. Either one of the three conditions
in the algorithm holds, or there exists a price p which induces a corresponding threshold t(p)

such that Fj(t(p)) = nj−1

√
1−δ
δ . This allows us to characterize the price path under this policy.

As long as more than k∗ agents have accepted the previous price and it is not possible to induce
pt as a threshold, the seller learns aggressively. If k∗ or fewer buyers accept, the seller stops
learning and exploits the highest-valued buyers at the bottom aj of the support of their beliefs.
Otherwise, the pricing policy will reach the target price of pt, and the seller will post this price
for the remainder of the game.

Lemma 26. Assume at least k∗+1 buyers have not yet rejected by round j. Let t∗ be the unique

value satisfying Fj(t
∗) = nj−1

√
1−δ
δ . Then there is a price with threshold response t∗.

For the limited supply setting, the result followed from letting the price p range over the
possible values it might take and noting the continuity of the accept side of the threshold equation
in p. For digital goods, the argument is even simpler:

Proof. Set p = aj . We have that the threshold equation becomes t∗−aj = (t∗−aj)F (t∗)nj−1 δ
1−δ .

Substituting Fj(t
∗) = nj−1

√
1−δ
δ yields the result.

Lemma 26 ensures that the seller is able to learn aggressively as long as the number of
remaining buyers exceeds the supply limit. The next lemma shows that once the seller has
learned enough, they can halt exploration and induce pt as a threshold. This ensures that the
pricing policy of Algorithm 9 eventually terminates with the seller posting pt, as long as k∗ or
more buyers have value which exceeds this target price.

Lemma 27. Assume at least k∗ + 1 buyers have not yet rejected by round j. Let t∗ be the

unique value satisfying Fj(t
∗) = nj−1

√
1−δ
δ . If t∗ ≥ pt, then there is a price which induces pt as

a threshold.

Proof. We must show that as long as t∗ > pt, then there is a price p such that

(pt − p) = (pt − aj)Fj(pt)nj−1 δ
1−δ .
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We may rearrange this as
pt − p
pt − a

= Fj(p
t)nj−1 δ

1−δ . (8)

We first show that the righthand side lies in [0, 1]. This follows from noting that

1 = Fj(t
∗)nj−1 δ

1−δ ≥ Fj(p
t)nj−1 δ

1−δ ≥ 0,

since Fj(t
∗) = nj−1

√
1−δ
δ and t∗ ≥ pt. We then note that we may choose p to make the lefthand

side of (8) range over all of [0, 1] by choosing p ∈ [aj , p
t]. It follows that there exists a choice of

p that satisfies (8).

E.2 Revenue Guarantee for Pricing Policy

We now argue that the expected revenue attained by the seller were they to use the pricing policy
in Algorithm 9 is a constant fraction of the Myerson benchark, which is n(1−F (p∗))p∗/(1− δ),
i.e. the revenue from selling to the agents each round using the revernue-optimal single-shot
mechanism for the initial value distribution. The revenue of our pricing policy is lower bounded
by

(k∗ + 1)ptPr[E≥k∗+1]
E[δj

∗ | E≥k∗+1]

1− δ
,

where j∗ is the round in which the seller first offers pt and E≥k∗+1 is the event that at least
k∗ + 1 buyers have value at least pt (or more generally, we define E≥k to be the event that at
least k buyers have value at least pt).

The argument consists of two main steps. The first step is to show that (k∗+ 1)ptPr[E≥k∗+1]
is within a constant factor of the single-shot Myerson revenue np∗(1− F (p∗)). This will follow
from basic probability theory and regularity of the value distributions. The second step is to
prove that E[δj

∗ | E≥k∗+1] is bounded below by a constant. In other words, the pricing policy in
Algorithm 9 converges to the price pt quickly, conditioned on sufficiently many buyers having a
high value. This will require a somewhat involved analysis of the stochastic process that governs
the prices’s path through buyers’ quantile space.

Single-Shot Revenue Approximation We now show that (k∗ + 1)ptPr[E≥k∗+1], which can
be interpreted as the probability of our pricing policy reaching pt conditioned on E≥k∗+1, mul-
tiplied by the revenue from a single round of sale to k∗ + 1 buyers, is a constant approximation
to the Myerson single-shot revenue np∗(1 − F (p∗)). We argue two cases, based on whether
q∗ ∈ [1/n, 2/(n+ 1)] or q∗ ≥ 2/(n+ 1). We begin with the former case.

Lemma 28. Assume q∗ ∈ [1/n, 2/(n+ 1)]. Then Pr[E≥k∗+1] ≥ 8n(1− F (p∗)).

Proof. The probability that at least two buyers have quantile at most 2/(n + 1) is at least the
probability that at least two buyers have quantile at most 1/n. We may write this probability
as

1−

[(
1− 1

n

)n
+

(
1− 1

n

)n−1]
.

This function is increasing in n, and hence it is lowerbounded by its value at n = 2, with value
1/4. Since 1−F (p∗) ≤ 2/(n+ 1), we also have that n(1−F (p∗)) ≤ 2n/(n+ 1) ≤ 2. Combining
these two bounds yields the lemma.
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Lemma 29. Assume q∗ ∈ [1/n, 2/(n+ 1)]. Then pt ≥ p∗/2.

Proof. By assumption, the buyers’ initial value distribution is regular. By definition, this means
the price-posting revenue curve R(q) = qF−1(1− q) is concave. We may therefore write:

2pt

n+ 1
= R

(
2

n+ 1

)
≥

1− 2
n+1

1− 1
n

R(1/n) =
1− 2

n+1

1− 1
n

· p
∗

n
.

Rearranging, we obtain

pt ≥ n+ 1

2n
·

1− 2
n+1

1− 1
n

p∗ = p∗/2.

Combining Lemmas 28 and 29 yields a 16-approximation when q∗ ∈ [1/n, 2/(n + 1)]. We
now turn to the case where q∗ ≥ 2/(n+ 1).

Lemma 30. Assume q∗ ≥ 2/(n+ 1). Then Pr[E≥k∗+1] is lower bounded by a constant.

Proof. Let qt denote 1 − F (pt). Note that Pr[E≥k∗+1] is equal to the probability of min(b(n +
1)q∗c, n − 1) = (n + 1)qt successes among n Bernoulli trials with weight qt. More abstractly,
denote by P (k, n, p) the probability of at least k successes from n Bernoulli trials of weight p.
Fixing k, note that P (k, n, p) is increasing in p. For our problem, P (min(b(n+1)q∗c, n−1), n, qt)
will therefore be minimized at integral values of b(n+ 1)q∗c. We may thus reduce the problem
to lowerbounding P (k, n, k/(n+ 1)) for k integral.

To derive a crude lower bound on P (k, n, k/(n+1)), we use the Chernoff-Hoeffding inequality,

which states that the probability of k − 1 or fewer successes is at most e
− 1

2
(1−(k−1)k n

n+1
)2 kn

(n+1) .
Upperbounding this quantity amounts to analyzing the integral minima of the exponent, which
can be shown to be at k = 2 for all values of n, and which are bounded away from 0, implying
that the probability of k − 1 or fewer successes is bounded away from 1.

Lemma 31. Assume q∗ ≥ 2/(n+ 1). Then k∗ + 1 ≥ 2
3n(1− F (p∗)).

Proof. If q∗ = 1, then n(1− F (p∗)) = n and k∗ + 1 = n as well. Hence, we consider q∗ < 1. In
this case, we have that q∗ ∈ [j/(n+ 1), (j + 1)/(n+ 1)) for some j ∈ {2, . . . , n}. We may upper
bound n(1− F (p∗)) by n

n+1(j + 1) ≤ j + 1. We may lower bound k∗ + 1 by j. Since j ≥ 2, this
implies the desired inequality.

Combining Lemmas 30 and 31 with the fact that since qt ≤ q∗, pt ≥ p∗ yields a constant-
approximation for the case where q∗ ≥ 2/(n+ 1), and thus overall.

Speed of Convergence We now prove that E[δj
∗ | E≥k∗+1] is lowerbounded by a constant.

The stochastic process we must analyze is the following: each round j, there are nj buyers who
have not yet rejected a price, and the current beliefs for these buyers has CDF Fj and support
[aj , bj ]. The seller posts a price pj which induces a threshold tj satisfying Fj(tj)

nj−1 = 1−δ
δ . In

other words, the price pj eliminates the bottom (1 − nj−1

√
1−δ
δ )-fraction of the support of the

current beliefs, with respect to the measure Fj . In what follows, we call (1 − nj−1

√
1−δ
δ ) the

learning rate for nj buyers, which we denote rnj .
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Let let Ek denote the probability that exactly k buyers have value above pt. For any such
event, we may construct a continuous upper bound on j∗ conditioned on Ek in the following
way:

Lemma 32. For any k ≥ k∗ + 1, conditioned on Ek, the following inequality holds:

j∗ ≤ log1−rk
qt

qk+1
+

n−1∑
i=k+1

log1−ri
qi
qi+1

+ log1−rn qn + n (9)

where qt = 1− F (pt) and qi denotes the quantile of the ith highest-valued agent.

Proof. In the event Ek, exactly k buyers have quantile less than 2/(n+ 1). Until the first buyer
rejects a price, the seller posts a price with threshold tj satisfying F (tj) = rn. After j rounds of
such prices, the bottom of the support of Fj will have quantile (1− rn)j . Consequently, it will
take dlog1−rn qne ≤ log1−rn qn + 1 rounds to eliminate the first buyer.

We can make a similar argument to bound the time it takes to eliminate the buyer with
the i − 1st highest value (i.e. the buyer with quantile qi−1) given that the ith highest-valued
buyer was eliminated in the previous round. If the buyer with the ith highest value (henceforth,
“buyer i”), was eliminated at the same time as buyer i − 1 (i.e. both buyers rejected for the
first time in the previous round), then for the sake of the argument, we may bound the number
of rounds to eliminate buyer i − 1 trivially by 1. Otherwise, the quantile of the bottom of the
support of the beliefs of the buyers who have not rejected lies in [qi−1, qi]. Hence, the number of
additional rounds required to eliminate buyer i−1 is at least dlog1−ri qi/qi+1e log1−ri qi/qi+1+1.

Finally, we may make a similar argument to argue that the time required for the price reach
p∗ is at most dlog1−rk

2/(n+1)
qk+1

e ≤ log1−rk
2/(n+1)
qk+1

+ 1. Noting that j∗ is the sum of the time

required to eliminate each subsequent buyer and then raise the price to p∗ once all but k have
been eliminated, and summing the bounds for each of these times yields the righthand side of
(9).

Further applying Jensen’s inequality to the upper bound in (9), we may replace each quantile
with its expectation. Noting that this new bound is worst when k = k∗ + 1, we obtain

Lemma 33. E[δj
∗ | E≥k∗+1] ≥ δ

∑n
i=2 log1−ri

i
i+1

+n.

Proof. Note that δj
∗

is a convex function of j∗. Hence, we may apply Jensen’s inequality to
obtain E[δj

∗ | Ek] ≥ δE[j
∗ | Ek].

The bound of Lemma 32 implies

E[j∗ | Ek] ≤ E

[
log1−rk

2/(n+ 1)

qk+1
+

n−1∑
i=k+1

log1−ri
qi
qi+1

+ log1−rn qn + n | Ek

]
, (10)

where the expectation is over the quantiles qk+1, . . . , qn, which are distributed as the order
statistics of n−k uniform draws from the interval [2/(n+1), 1]. We may rearrange the righthand
side of (10) as:

E

[
n∑

i=k+1

log qi

(
1

log(1− ri)
− 1

log(1− ri−1)

)
+

log 2
n+1

log(1− rk)
+ n | Ek

]
. (11)
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Note that 1
log(1−ri) −

1
log(1−ri−1)

is positive for all i. Consequently, Jensen’s inequality implies

that we may upper bound the expectation of the function in the lefthand side of (10) by the
function of the expectation of the qis. We therefore have:

E[j∗ | Ek] ≤ log1−rk
2/(n+ 1)

E[qk+1 | Ek]
+

n−1∑
i=k+1

log1−ri
E[qi | Ek]
E[qi+1 | Ek]

+ log1−rn E[qn | Ek] + n. (12)

Since qk+1, . . . , qn are distributed as the order statistics of n−k uniform draws from the interval

[2/(n + 1), 1], we may have E[qi | Ek] = i−k
n−k+1

(
1− 2

n+1

)
+ 2

n+1 . Substituting these quantities

yields

E[j∗ | Ek] ≤ log1−rk
2/(n+ 1)

k+1−k
n−k+1

(
1− 2

n+1

)
+ 2

n+1

+

n−1∑
i=k+1

log1−ri

i−k
n−k+1

(
1− 2

n+1

)
+ 2

n+1

i+1−k
n−k+1

(
1− 2

n+1

)
+ 2

n+1

+ log1−rn

(
n−k
n−k+1

(
1− 2

n+1

)
+ 2

n+1

)
+ n. (13)

One can verify that this quantity is largest for k = 2, regardless of δ and n. Conditioned on the
event E2, we have that E[qi] = i/n + 1. For all k ≥ 2, we may therefore simplify the righthand
side of (12) as

E[j∗ | Ek] ≤
n∑
i=2

log1−ri
i

i+ 1
+ n. (14)

Lemma 34. The quantity δ
∑n
i=2 log1−ri

i
i+1

+n is lowerbounded by a constant for δ ≥ n/(n+ 1).

Proof. We may write

δ
∑n
i=2 log1−ri

i
i+1

+n = δn
n∏
i=2

δlog1−ri
i
i+1 .

Note that for all i, the function δ
log

1− i−1
√

(1−δ)/δ
i
i+1 is increasing in δ, so we may replace δ by its

lower bound.
We next show that log

1− i−1
√

1/n
i
i+1 is at most n1/(i−1). To see this, note that (1− i−1

√
1/n)x

is decreasing in x, taking value 1 at x = 0 and taking a value between 1/4 and 1/e at n1/(i−1).
For i ≥ 2, i/(i+ 1) ≥ 1/e, and hence the value of x that solves (1− i−1

√
1/n)x = i/(i+ 1) must

be at most n1/(i−1). The lemma then follows from noting that
∑n

i=1 n
1/i is O(n).

F Proof of Theorem 14

In this appendix, we prove a generalization of Theorem 5, stating that in any threshold equilib-
rium that satisfies the no-backtracking and natural prices refinements, the seller does not learn
about buyers’ values, and instead posts at the bottom of buyers’ supports. Our proof generalizes
that of Theorem 5; we show that the existence of a non-trivial threshold for some buyer implies
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a non-monotonicity in that buyer’s expected total discounted allocation. This contradicts the
monotonicity requirement of Theorem 8.

We begin by stating a version of Theorem 8 which holds in a setting with many buyers.
The key difference is that in this new setting, randomness over other buyers’ types might create
uncertainty over the price in future rounds, so monotonicity of allocations holds with respect to
expected allocations. We begin by defining expected discounted allocations.

Definition 35. Given a PBE of the digital goods discriminatory pricing game with fixed value
distributions, let xji (v) be an indicator variable of whether or not buyer i purchases in round j
under the actions generated by the value profile v. The expected discounted allocation for agent
i with value vi is given by:

Xi(vi) =
∞∑
j=1

δj−1Ev−i [x
j
i (v)]

Any buyer i with value vi may simulate the actions of some other value v′i and obtain the
expected discounted allocations and payments of that other value. Consequently, the proof of
monotonicity condition of Theorem 8 applies. We obtain:

Lemma 36. In any PBE for the digital goods setting with discriminatory pricing, for any buyer
i, the expected total discounted allocation Xi(vi) is nondecreasing in vi.

Having established this fact, we now show that if there is a round j in which the seller post a
price pj and there is some buyer i who accepts with positive probability and rejects with positive
probability, i.e. the seller learns, then as long as δ > 1/2, there must be a nonmonotonicity in
i’s expected total discounted allocations.

Consider a history in which there is some round j in which some buyer i has a non-trivial
threshold response to the price pji . That is, their threshold tji lies in the support [aji , b

j
i ) of

the current beliefs for their value. Since PBE requires that continuation strategies from every
history be best responses for all players, we may assume for simplicity that j is the first round,
and we suppress the round index j in what follows. As we did to prove Theorem 5, we note
that all that is required to produce a contradiction is a type v′i < ti such that Xi(v

′
i) > 1. If

this occurs, we may break ties such that when buyer i has value ti, they accept in the first
round, and never accept a subsequent price without changing the incentives in equilibrium, as
the threshold type has measure zero. In this new equilibrium, we have Xi(ti) = 1. This yields
the following lemma:

Lemma 37. In any PBE for the digital goods setting with discriminatory pricing and buyer i,
let ti be the threshold type for buyer i under the first round’s price. Then for any value vi ≤ ti,
Xi(vi) ≤ 1.

We next show that if buyer i has a non-trivial threshold response in the first round, then
there must be a value vi ≤ ti such that Xi(vi) > 1, which will prove the theorem. The proof
follows the spirit of that of Lemma 9. We show that there exists a history where buyer i simply
stops buying the item, despite seeing prices below their value.

Lemma 38. For any PBE of the digital goods setting with discriminatory pricing and any buyer
i, assume the first round threshold for i lies on the interior of i’s initial support, i.e. ti ∈ (ai, bi).
Then if δ > 1/2, there is some round j and some history hj such that:

1. hj occurs with positive probability in equilibrium, conditioned on vi ∈ [ai, ti).

36



2. for all rounds 1 < j′ < j, buyer i accepts in hj.

3. all types for i in the support of the updated beliefs F ji after hj reject in round j.

Proof. We argue by contradiction. For the lemma to be false, it must be that after any history
hj leading into round j satisfying conditions 1 and 2 in the statement of the Lemma, buyer i
has a positive probability of accepting the price pji for round j. Let T ji (v |hj) be an indicator
variable for whether or not buyer i accepts their round j price assuming the history is hj and
their value is v. That is, T ji (v |hj) = 1 if v is less than the threshold tji in that history, and 0
otherwise. By assumption, it must be that

lim
v→t−i

T ji (v |hj) = 1 (15)

for any history hj satisfying conditions 1 and 2.
For any round j ≥ 2, we can lower bound buyer i’s probability of allocation in round j when

they have value v by considering only the contribution from histories satisfying conditions 1
and 2. That is, we may define a lower bound Xj

i (v) by:

Xj
i (v) ≡

∑
hj :Dj′

i =A for all 1<j′<j

T ji (v |hj)Pr(hj | vi = v)

Because we have that for any history where buyer i has accepted in every round beyond the
second, they accept the next price with positive probability, it must be that as vi becomes
sufficiently high, they accept every price in every on-path history up to round j (excluding the
first round). Formally,

lim
v→t−i

∑
hj :Dj′

i =A for all 1<j′<j

Pr(hj | vi = v) = 1. (16)

Together, facts (15) and (16) imply that limv→t−i
Xj
i (v) = 1 for all j > 1. Combining these

per-round contributions yields a lower bound on the expected total discounted allocation for
buyer i. We have that Xi(v) ≥

∑∞
j=2 δ

j−1Xj
i (v). Note that because δ > 1/2

lim
v→t−i

∞∑
j=2

δj−1Xj
i (v) > 1.

This implies the existence of a type v < ti for buyer i such that Xi(v) > 1. This is contradicts
Lemma 37.

In a history hj satisfying Lemma 38’s conditions, buyer i’s behavior in round j is such that
the seller learns nothing about their type. The no-backtracking condition implies that this buyer
will continue to face the same price pji for all subsequent rounds, and will continue rejecting every
round. Natural prices implies that there are types for buyer i who will reach this history and
will have incentive to deviate: pji will be less than their price, so accepting at least once more
will be preferable to rejecting for the rest of the game. We conclude that histories satisfying the
conditions of Lemma 38 cannot exist in equilibrium. This, in turn, implies that ti cannot lie in
the support of buyer i’s value in the first round, i.e. no learning can occur for buyer i. Since
buyer i was chosen arbitrarily, this completes the proof of the Theorem.
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G Full Description of Two-Buyer Equilibrium

In this appendix, the two-buyer equilibrium of Section 7.1 in detail. The equilibrium has two
phases: an exploration phase in which learning occurs, and an exploitation phase, where the
seller ceases to learn from buying behavior and instead posts the bottom of the strongest player’s
support for the rest of the game. The exploration phase lasts from the beginning of the game
until any buyer rejects a price. The exploitation phase begins when a buyer rejects and continues
for the rest of the game.

We first describe the exploration phase of the game. Assume that up to round j, both buyers
have accepted all prices. The seller selects a price pj for the current round, and assumes that
the buyers (who have the same distribution Fj after beliefs are updated, supported on [aj , bj ])
will respond according to a threshold tj satisfying the threshold equation:

(tj − pj)
(
Fj(tj) +

1−Fj(tj)
2

)
=
tj − aj

2
Fj(tj)

δ

1− δ
. (17)

The lefthand side represents the utility of a buyer i with value tj when they accept. If
the other buyer rejects, which occurs with probability Fj(tj), then buyer i gets the item with
certainty, at price pj . Otherwise, they get it with probability 1/2 at that same price. The
righthand side represents the expected utility from rejection. Rejecting triggers the exploitation
phase of the game. If the other buyer rejects as well, then the seller will post aj for the remainder
of the game, and both buyers will accept for the remainder of the game, yielding the righthand
side of (17). If the other buyer accepts, the seller will post tj for the rest of the game, yielding
no utility for buyer i.

For a given price, there might exist multiple thresholds satisfying (17). To disambiguate, let

T
bj
aj denote the set of solutions to (17). Let p∗ be the monopoly price for the initial distribution

F . That is, p∗ is the value of p maximizing p(1− F (p)).2 Define the threshold t
bj
aj (pj) to be p∗

if p∗ ∈ T bjaj (p), pj if pj ≤ aj , and t
bj
aj (p) = max

t∈T
bj
aj

(pj)
t if T

bj
aj (pj) 6= ∅ and infinity otherwise.3

Given this threshold function, the seller optimizes their revenue, which is given by the recurrence:

R
bj
aj (pj) =

(
1− Fj

(
t
bj
aj (pj)

))2(
pj + δR

bj

t
bj
aj

(pj)

)

+ 2Fj

(
t
bj
aj (pj)

)(
1− Fj

(
t
bj
aj (pj)

))(
pj +

t
bj
aj (pj)δ

1− δ

)

+ Fj

(
t
bj
aj (pj)

)2( ajδ

1− δ

)
,

where Ryx is the seller’s optimal revenue from the continuation game where the buyers are both
distributed acccording to F yx . This equation comes from a straightforward breakdown of the
seller’s revenue. If both buyers accept, the seller makes revenue pj , and both buyers must have
value at least tba(p), so the seller is faced the next round with a fresh game with values distributed

according to F conditioned on [t
bj
aj (pj), bj ]. If exactly one rejects, then the seller receives revenue

2If multiple maximizers exist, choose one arbitrarily.
3Explicitly seleting monopoly price for a threshold is not required for the strategies we describe to be an

equilibrium, but it facilitates the revenue analysis.
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pj and prices at t
bj
aj (pj) until the end of the game, and this price is accepted. If neither accepts,

then the seller prices at aj for the rest of the game. Note that the seller may solve the above
recurrence for the optimal price pj by value iteration.

We now give a full description of the seller’s strategy in Algorithm 10, the buyers’ strategy in
Algorithm 11, and the threshold selection rule in Algorithm 12. Note that responses to off-path
actions will be dictated by careful updates of the beliefs, which we will explain after presenting
the strategies.

Algorithm 10: Seller’s Strategy

Input : Purchasing history hj , Support bounds (aj1, b
j
1), (a

j
2, b

j
2)

Output: Price pj
if hj == (AA)j then

aj1 = aj2 = a;

bj1 = bj2 = b;
if a ≥ p∗ then

pj = a
else

pj = arg max
p
Rba(p)

else

pj = max{aj1, a
j
2};

Algorithm 11: Buyer i Strategy

Input : Purchasing history hj , Support bounds (aj1, b
j
1), (a

j
2, b

j
2), value vi, price pj

Output: Purchasing decision for round j
if hj == (AA)j−1 then

aj = aj1 = aj2;

bj = bj1 = bj2;

Accept if and only if vi ≥ t
bj
aj (pj)

else

if pj ≤ max{aj1, a
j
2} then

Accept if and only if vi ≥ pj
else

Reject

We now describe the belief updates. On-path, beliefs are dictated by standard Bayesian
updates. In the exploration phase, the buyers have the same support in round j, [aj , bj ]. Any

buyers who accept price pj have their support updated to [t
bj
aj (pj), bj ]. Those who reject have

new support [aj , t
bj
aj (pj)]. In the exploitation phase, each buyer either always accepts or always

rejects, so updates are trivial.
Off-path, we use belief updates to implement punishments for deviation. In particular, if

all buyers are expected to take the same action but one deviates, the seller will update their
beliefs to the maximum value of the support. For the rest of the game, the seller will post this
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Algorithm 12: Threshold Selection Rule

Input : Support bounds (aj , bj), price pj

Output: Threshold t
bj
aj (pj)

p∗ = maxp(1− F (p))p;

if (p∗ − pj)
(
Fj(p

∗) +
1−Fj(p∗)

2

)
=

p∗−aj
2 Fj(p

∗) δ
1−δ then

Return p∗;
else if pj ≤ aj then

Return pj ;

else if ∃t such that (t− pj)
(
Fj(t) +

1−Fj(t)
2

)
=

t−aj
2 Fj(t)

δ
1−δ then

Return max{t : (t− pj)
(
Fj(t) +

1−Fj(t)
2

)
=

t−aj
2 Fj(t)

δ
1−δ ;

else
Return ∞;

value, and with probability 1, all buyers will reject. The details of the belief update algorithm
are given in Algorithm 13. Together with Algorithms 10 and 11, this fully specifies equilibrium.

Theorem 39. The strategies and beliefs specified by Algorithms 10, 11, and 13 is a PBE for
δ ≥ 2/3.

In Section G.1, we show that the buyers are best-responding, and in Section G.2, we show
that the seller is best-responding. Together, these results prove the theorem.

G.1 Buyer Incentives

As discussed, the belief updates of Algorithm 13 are designed to punish agents for out-of-
equilibrium actions. We will use this as a tool for enforcing equilibrium for the buyers. We must
first argue that the punishment is effective.

Lemma 40. If any buyer takes an out of equilibrium action in round j, i.e., an action that has
zero probability according to the public beliefs, then that buyer does not obtain any utility from
rounds j + 1 and on.

Proof. As described in Algorithm 13, once a buyer i accepts or rejects when all buyers should
have behaved in the opposite fashion according to their strategy, the public belief about this
buyer’s type becomes a pointmass on the top of their original distribution’s support, b. As a
result, in all future rounds the seller posts a price of at least b.

We now argue that the buyers are in equilibrium.

Lemma 41. For δ ≥ 2/3, each buyer is best-responding to the strategies of the seller and the
other buyer.

Proof. We break our analysis into two parts: the exploration phase, which occurs when no
buyer has rejected yet, and the exploitation phase, where at least one buyer has rejected. These
encompass the on-path incentives, but in fact also apply to any history in which only the seller
has deviated from equilibrium. If a buyer has taken an off-path action in the history, then
Lemma 40 implies that incentives are trivial.
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Algorithm 13: Belief updates

Input : Purchasing history hj+1, Current support bounds (aj1, b
j
1), (a

j
2, b

j
2), First-round

common support bounds (a, b).
Output: Updated support bounds (aj+1

1 , bj+1
1 ), (aj+1

2 , bj+1
2 ).

for i ∈ {1, 2} do
if all types for i should reject pj then

if buyer i rejected pj then

aj+1
i = aji , b

j+1
i = bji

else

aj+1
i = b, bj+1

i = b

else if all types should accept then
if buyer i accepted then

aj+1
i = aji , b

j+1
i = bji

else

aj+1
i = b, bj+1

i = b

else
if buyer i accepted then

aj+1
i = t

bji
aji

(pj), b
j+1
i = bji

else

aj+1
i = aji , b

j+1
i = t

bji
aji

(pj)

Exploration Phase Assume the seller has offered some sequence of prices, all of which have
been accepted by both buyers. Then the beliefs about the buyers’ values in round j are dis-
tributed IID according to Fj , for some support interval [aj , bj ]. Now assume that in the current
round, the seller has posted price pj , and assume that there is at least one threshold tj satisfying
equation (17). We will show that for buyer 1 (without loss of generality), accepting pj is a best
response if v1 ≥ tj , and rejecting is a best response if v1 < tj .

Assume v1 ≥ tj The utility for buyer i from accepting, UA, satisfies

uA ≥
(
Fj(tj) +

1−Fj(tj)
2

)
(v1 − pj) +

δ

1− δ
(v1 − tj)Fj(tj). (18)

The first term comes from the current round: buyer 1 wins at price p with probability 1 if buyer
2 rejects, and with probability 1/2 if buyer 2 accepts. The second term comes from the event
that buyer 2 rejects this round, in which case the seller will enter the exploitation phase and
offer a price of tj for the remainder of the game.

Meanwhile, if buyer 1 rejects this round, the seller will enter the exploitation phase regardless
of the action of buyer 2. This leaves us with two cases. If buyer 2 rejects, then the seller will
post a price of a for the rest of the game (assuming buyer 1 does not attempt further deviations,
which by Lemma 40 are not profitable). If buyer 2 accepts, then the seller will instead post tj in
the next round. Note that buyer 1 may now accept tj next round. Doing so will be profitable,
as v1 ≥ tj , but because the seller expects rejection from buyer 1, the seller will update their
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beliefs for buyer 1 to be a pointmass on the highest possible value, yielding no further utility.
It follows that if buyer 1 rejects this round, their expected utility uR satisfies:

uR ≤ Fj(tj)
v1 − aj

2
· δ

1− δ
+ δ(1− Fj(tj))

v1 − tj
2

. (19)

Write x = v1 − tj . By assumption, x ≥ 0. By subtracting expression (18) from expression
(19) and rearranging, we obtain the following lower bound on the margin by which buyer 1
would prefer to accept:

uA − uR ≥ (tj + x− pj)
1 + Fj(tj)

2
− (tj + x− aj)

Fj(tj)δ

2(1− δ)
+ x

(
δFj(tj)

1− δ
− δ(1− Fj(tj))

2

)
,

which we rearrange as:

1
2

(
(Fj(tj) + 1)(tj − pj)− Fj(tj)(tj − aj) δ

1−δ

)
+x
(
1+F (t)

2 − F (t)
2

δ
1−δ + δF (t)

1−δ −
δ(1−F (t))

2

)
.

(20)

Next, note that we can rearrange the threshold equation (17) to get:

(Fj(tj) + 1)(tj − pj) = Fj(tj)(tj − aj)
δ

1− δ
. (21)

Applying equation (21) to the expression in (20) allows us to write the utility difference
between accepting and rejecting as a product of x and another term which is clearly positive:

uA − uR ≥ x
(

1 + Fj(tj)

2
− Fj(tj)

2

δ

1− δ
+
δFj(tj)

1− δ
− δ(1− Fj(tj))

2

)
. (22)

Assume v1 < tj If buyer 1 accepts this round, they will win with probability Fj(tj) + (1 −
Fj(tj))/2 = (1 + Fj(tj))/2. All subsequent prices will be above tj , so they will receive no
continuation payoff. Their utility from accepting is therefore:

uA =
1 + Fj(tj)

2
(v1 − pj). (23)

Meanwhile, if buyer 1 rejects, they trigger the exploitation phase. If buyer 2 also rejects,
then the seller offers a for the remainder of the game. If buyer 2 accepts, then the price for the
rest of the game is tj , in which case buyer 1 cannot obtain any utility. The utility from rejecting
is therefore:

uR =
Fj(tj)

2

δ(v1 − aj)
1− δ

. (24)

Combining equations (23) and (24) yields:

uR − uA =
Fj(tj)

2

δ(v1 − aj)
1− δ

− 1 + Fj(tj)

2
(v1 − pj)

After substituting x = tj − v1 and applying equation (21), we have:

uR − uA = x

(
1 + Fj(tj)

2
− Fj(tj)

2

δ

1− δ

)
(25)

Note that we have defined the threshold selection rule such that if pj < aj , then buyer 1 will
accept pj . Hence, v1 < tj only if pj > aj . In this case, tj − pj < tj − aj , and hence equation
(21) implies that the term in parentheses in (25) is positive. It follows that agents with value
below tj will reject.
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Assume (17) has no solution It is possible for the price pj to be such that the threshold
equation has no solution. In this case, we require that all buyers reject as a best response.

If buyer 1 accepts, they get utility uA = v1 − pj , as buyer 2 will reject this round, and by
Lemma 40, they will receive no utility in the future. If they reject, then the seller will enter
the exploit phase of the equilibrium and post aj for the rest of the game. This yields utility

uR = δ
1−δ

v1−aj
2 .

When the threshold equation (17) has no solution, it must be that the lefthand side of the
rearranged threshold equation (21) is less than the righthand side. This follows from the fact
that for tj < pj , the lefthand side is negative, while the righthand side is positive. Since both
sides are continuous functions of tj , it cannot be that the lefthand side grows larger than the
right, or else they would cross to yield a solution. Consequently, if (21) has no solution, it must
be that for all t,

(1 + Fj(t))(t− pj) <
δ

1− δ
(t− aj)Fj(t).

Rearranging yields:

(t− pj) <
δ

1− δ
Fj(t)

Fj(t) + 1
(t− aj)

≤ 1

2

δ

1− δ
(tj − a).

Setting t = v1 yields that uR > uA, as desired.

Exploitation Phase: In the exploitation phase, the seller prices at the bottom of the belief
support of the strongest buyer. If the seller offers this price or lower, the buyers act as price-
takers. If the seller offers a higher price, both buyers reject. We must show that each of these
behaviors is a best response.

Seller offers p ≤ max(a1, a2) Note that if an agent who is expected to accept chooses instead
to reject, they get no utility in the current round, and no utility in the future, by Lemma 40.
Accepting the current price is clearly preferable. The only case this does not cover is if a1 6= a2
and p lies in between. Assume without loss of generality that a1 > a2. Buyer 2’s purchasing
decision does not affect future prices, so they should act as a price taker.

Seller offers p > max(a1, a2) We first argue in the case where a1 = a2 = a. In this case, the
utility of buyer 1 (without loss of generality) from rejecting is δ

1−δ
v1−a
2 , as they will win the item

with probability 1/2 for the rest of the game. If they accept, they will receive utility v1 − p, as
by Lemma 40, they will not receive utility in subsequent rounds. Since δ ≥ 2/3, we have that

δ
2(1−δ) ≥ 1. Since p > a as well, we have that δ

1−δ
v1−a
2 > v1 − p. Hence, rejection is optimal.

In the case where a1 6= a2, the incentive to reject is even greater, due to the fact that the
higher-valued agent will receive the item with probability 1 in every subsequent round if they
reject. Hence, rejection is optimal here as well.

It follows that in both the exploration and exploitation phases, the buyers are best responding
to the strategy of the seller.
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G.2 Seller Incentives

Lemma 42. The seller is best responding to the actions of the buyers.

Proof. We break our analysis into three cases: exploration phase, exploitation phase, and off-
path analysis.

Exploration Phase In the exploration phase both buyers have the same support, and the
seller has three options: price below the common support, post a price p such that there is a
threshold response solving equation (17), or post a price p such that no solution to (17) exists.
We will show that the second option, posting a price within the common support such that there
is a threshold response, is optimal. Since the seller’s equilibrium strategy is defined implicitly to
be the optimal such price, it will follow that they are best responding in the exploration phase.

Let aj be the lower bound of the common support. We will first show that pricing below
aj yields less expected revenue than pricing at aj . This implies that the seller prefers to post a
price within the common support. To prove this claim, observe that any price pj ≤ aj will be
accepted with probability 1 by both buyers and cause the beliefs to remain unchanged. Clearly
the seller would prefer to induce this outcome with a higher price.

We now argue that posting a price for which a threshold response does not exist is suboptimal.
This follows from the fact that both buyers will reject, yielding no revenue and no update to
the beliefs. The next round’s decision problem is identical to that of the current round, but
with payoffs discounted by δ. The seller clearly does not benefit from skipping a round in this
manner.

Exploitation Phase In the exploitation phase, the seller posts max(aj1, a
j
2), the higher of the

lower bounds of the two buyers supports. We will show that the seller prefers this to their other
options, which are posting a lower price, or posting a higher price.

The seller prefers not to post a lower price for the same reason that they would prefer not
to post below the common support in the exploration phase. As long as the price pj satisfies

pj ≤ max(aj1, a
j
2), it will be accepted with probability 1, and will not cause the beliefs about the

stronger of the two buyers to change. Posting the largest price which induces this outcome is
preferable to other such prices.

If the seller posts a price pj > max(aj1, a
j
2), then this price is rejected by all agents, and beliefs

do not change. The seller effectively skips the round and is faced with the same decision next
round, with a discount. This is not optimal. Hence, the optimal price to post in the exploitation
phase is max(aj1, a

j
2).

Off-Path Analysis We finally analyze the case where a buyer has taken an action in the
current history that was not expected of any type. In this case, the seller updates their beliefs
to the highest possible value b, and the buyer strategy dictates that they behave as a price-taker.
The optimal response to such a scenario is to post b every round.
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